, Volume 29, Issue 6, pp 605–616 | Cite as

Simultaneous removal of hexavalent chromium and o-dichlorobenzene by isolated Serratia marcescens ZD-9

  • Weihua XuEmail author
  • Guofeng Duan
  • Yunguo Liu
  • Guangming Zeng
  • Xin Li
  • Jie Liang
  • Wei Zhang
Original Paper


Heavy metals–organics mixture pollution is increasingly concerned and simultaneous removal of organic pollutants and heavy metals is becoming significant. In this study, a strain was isolated from the sediment of a tannery effluent outfalls, which can remove o-dichlorobenzene (o-DCB) and Cr(VI) simultaneously. The bacterial isolate was identified as Serratia marcescens by the 16S rRNA gene sequences. The strain removed about 90% of o-DCB and more than 80% of Cr(VI) at the concentration of 1.29 g L−1 o-DCB and 20 mg L−1 Cr(VI). In the presence of concomitant pollutant o-DCB, the optimal pH (8.0) and temperature (30 °C) were determined for Cr(VI) removal. Changes of the bacterial cells and intracellular black Cr(III) sediments were observed by the TEM auxiliary analysis. The results of the FTIR spectroscopy analysis indicated that hydroxyl, amide and polysaccharides were involved in the process of Cr(VI) removal.


Simultaneous bioremediation Mixture pollution Cr(VI) removal o-Dichlorobenze degradation Serratia marcescens 



This research was financially supported by the Key Research and Development Program of Hunan Province (No. 2018SK2047), the National Natural Science Foundation of China (No. 51521006).


  1. Albonetti S, Blasioli S, Bonelli R, Mengou JE, Scirè S, Trifirò F (2008) The role of acidity in the decomposition of 1,2-dichlorobenzene over TiO2-based V2O5/WO3 catalysts. Appl Catal A 341:18–25CrossRefGoogle Scholar
  2. Arjoon A, Olaniran AO, Pillay B (2013) Enhanced 1,2-dichloroethane degradation in heavy metal co-contaminated wastewater undergoing biostimulation and bioaugmentation. Chemosphere 93:1826–1834CrossRefGoogle Scholar
  3. Asatiani NV, Abuladze MK, Kartvelishvili TM, Bakradze NG, Sapojnikova NA, Tsibakhashvili NY, Tabatadze LV, Lejava LV, Asanishvili LL, Holman H-Y (2004) Effect of chromium(VI) action on Arthrobacter oxydans. Curr Microbiol 49:321–326CrossRefGoogle Scholar
  4. Bae WC, Lee H, Choe YC, Jahng DJ, Lee SH, Kim SJ, Lee JH, Jeong BC (2005) Purification and characterization of NADPH-dependent Cr(VI) reductase from Escherichia coli ATCC 33456. J Microbiol 43:21–27PubMedGoogle Scholar
  5. Benning LG, Phoenix V, Yee N, Tobin M (2004) Molecular characterization of cyanobacterial silicification using synchrotron infrared micro-spectroscopy. Geochim Cosmochim Acta 68:729–741CrossRefGoogle Scholar
  6. Braeckevelt M, Mirschel G, Wiessner A, Rueckert M, Reiche N, Vogt C, Schultz A, Paschke H, Kuschk P, Kaestner M (2008) Treatment of chlorobenzene-contaminated groundwater in a pilot-scale constructed wetland. Ecol Eng 33:45–53CrossRefGoogle Scholar
  7. Campos VL, Moraga R, Yanez J, Zaror CA, Mondaca MA (2005) Chromate reduction by Serratia marcescens isolated from tannery effluent. Bull Environ Contam Toxicol 75:400–406CrossRefGoogle Scholar
  8. Cheng G, Li X (2009) Bioreduction of chromium(VI) by Bacillus sp. isolated from soils of iron mineral area. Eur J Soil Biol 45:483–487CrossRefGoogle Scholar
  9. Ganguli A, Tripathi A (2002) Bioremediation of toxic chromium from electroplating effluent by chromate-reducing Pseudomonas aeruginosa A2 Chr in two bioreactors. Appl Microbiol Biotechnol 58:416–420CrossRefGoogle Scholar
  10. Garg SK, Tripathi M, Singh SK, Singh A (2013) Pentachlorophenol dechlorination and simultaneous Cr6+ reduction by Pseudomonas putida SKG-1 MTCC (10510): characterization of PCP dechlorination products, bacterial structure, and functional groups. Environ Sci Pollut Res 20:2288–2304CrossRefGoogle Scholar
  11. Gupta A, Balomajumder C (2015) Simultaneous removal of Cr(VI) and phenol from binary solution using Bacillus sp. immobilized onto tea waste biomass. J Water Process Eng 6:1–10CrossRefGoogle Scholar
  12. Han X, Wong YS, Wong MH, Tam NF (2007) Biosorption and bioreduction of Cr(VI) by a microalgal isolate, Chlorella miniata. J Hazard Mater 146:65–72CrossRefGoogle Scholar
  13. Kulkarni SG, Harris AJ, Casciano DA, Mehendale HM (1999) Differential protooncogene expression in Sprague Dawley and Fischer 344 rats during 1,2-dichlorobenzene-induced hepatocellular regeneration. Toxicology 139:119–127CrossRefGoogle Scholar
  14. Kumagai S, Matsunaga I (1997) Relations between exposure to o-dichlorobenzene and concentrations of urinary metabolites. J Occup Health 39:124–129CrossRefGoogle Scholar
  15. Lai CY, Zhong L, Zhang Y, Chen JX, Wen LL, Shi LD, Sun YP, Ma F, Rittmann BE, Zhou C, Tang Y, Zheng P, Zhao HP (2016) Bioreduction of chromate in a methane-based membrane biofilm reactor. Environ Sci Technol 50:5832–5839CrossRefGoogle Scholar
  16. Larrubia M (2002) An FT-IR study of the conversion of 2-chloropropane, o-dichlorobenzene and dibenzofuran on V2O5–MoO3–TiO2 SCR–DeNOx catalysts. Appl Catal B 39:343–352CrossRefGoogle Scholar
  17. Li J, Lin Q, Zhang X (2010) Mechanism of electron transfer in the bioadsorption of hexavalent chromium within Leersia hexandra Swartz granules by X-ray photoelectron spectroscopy. J Hazard Mater 182:598–602CrossRefGoogle Scholar
  18. Liu YG, Xu WH, Zeng GM, Li X, Gao H (2006) Cr(VI) reduction by Bacillus sp. isolated from chromium landfill. Process Biochem 41:1981–1986CrossRefGoogle Scholar
  19. Long D, Tang X, Cai K, Chen G, Chen L, Duan D, Zhu J, Chen Y (2013) Cr(VI) reduction by a potent novel alkaliphilic halotolerant strain Pseudochrobactrum saccharolyticum LY10. J Hazard Mater 256–257:24–32CrossRefGoogle Scholar
  20. Lou MM, Zhu B, Muhammad I, Li B, Xie GL, Wang YL, Li HY, Sun GC (2011) Antibacterial activity and mechanism of action of chitosan solutions against apricot fruit rot pathogen Burkholderia seminalis. Carbohydr Res 346:1294–1301CrossRefGoogle Scholar
  21. Ma Z, Zhu W, Long H, Chai L, Wang Q (2007) Chromate reduction by resting cells of Achromobacter sp. Ch-1 under aerobic conditions. Process Biochem 42:1028–1032CrossRefGoogle Scholar
  22. Ma X, Sun Q, Feng X, He X, Guo J, Sun H, Cao H (2013) Catalytic oxidation of 1,2-dichlorobenzene over CaCO3/α-Fe2O3 nanocomposite catalysts. Appl Catal A 450:143–151CrossRefGoogle Scholar
  23. Mabbett AN, Macaskie LE (2001) A novel isolate of Desulfovibrio sp. with enhanced ability to reduce Cr(VI). Biotechnol Lett 23:683–687CrossRefGoogle Scholar
  24. Meena AK, Mishra G, Rai P, Rajagopal C, Nagar P (2005) Removal of heavy metal ions from aqueous solutions using carbon aerogel as an adsorbent. J Hazard Mater 122:161–170CrossRefGoogle Scholar
  25. Megharaj M, Avudainayagam S, Naidu R (2003) Toxicity of hexavalent chromium and its reduction by bacteria isolated from soil contaminated with tannery waste. Curr Microbiol 47:51–54CrossRefGoogle Scholar
  26. Mohan D, Pittman CU Jr (2006) Activated carbons and low cost adsorbents for remediation of tri-and hexavalent chromium from water. J Hazard Mater 137(2):762–811CrossRefGoogle Scholar
  27. Monferran MV, Echenique JR, Wunderlin DA (2005) Degradation of chlorobenzenes by a strain of Acidovorax avenae isolated from a polluted aquifer. Chemosphere 61:98–106CrossRefGoogle Scholar
  28. Murugavelh S, Mohanty K (2012) Bioreduction of hexavalent chromium by free cells and cell free extracts of Halomonas sp. Chem Eng J 203:415–422CrossRefGoogle Scholar
  29. Olaniran AO, Balgobind A, Pillay B (2011) Quantitative assessment of the toxic effects of heavy metals on 1,2-dichloroethane biodegradation in co-contaminated soil under aerobic condition. Chemosphere 85:839–847CrossRefGoogle Scholar
  30. Patra RC, Malik S, Beer M, Megharaj M, Naidu R (2010) Molecular characterization of chromium(VI) reducing potential in Gram positive bacteria isolated from contaminated sites. Soil Biol Biochem 42:1857–1863CrossRefGoogle Scholar
  31. Pattanapipitpaisal P, Brown N, Macaskie L (2001) Chromate reduction and 16S rRNA identification of bacteria isolated from a Cr(VI)-contaminated site. Appl Microbiol Biotechnol 57:257–261CrossRefGoogle Scholar
  32. Ramírez-Díaz MI, Díaz-Pérez C, Vargas E, Riveros-Rosas H, Campos-García J, Cervantes C (2008) Mechanisms of bacterial resistance to chromium compounds. Biometals 21(3):321–332CrossRefGoogle Scholar
  33. Shen G, Lu Y, Hong J (2006) Combined effect of heavy metals and polycyclic aromatic hydrocarbons on urease activity in soil. Ecotoxicol Environ Saf 63:474–480CrossRefGoogle Scholar
  34. Srivastava S, Ahmad AH, Thakur IS (2007) Removal of chromium and pentachlorophenol from tannery effluents. Bioresour Technol 98:1128–1132CrossRefGoogle Scholar
  35. Thacker U, Parikh R, Shouche Y, Madamwar D (2006) Hexavalent chromium reduction by Providencia sp. Process Biochem 41:1332–1337CrossRefGoogle Scholar
  36. Thompson I, Bailey M, Ellis R, Maguire N, Meharg A (1998) Response of soil microbial communities to single and multiple doses of an organic pollutant. Soil Biol Biochem 31:95–105CrossRefGoogle Scholar
  37. Tziotzios G, Dermou E, Politi D, Vayenas DV (2008) Simultaneous phenol removal and biological reduction of hexavalent chromium in a packed-bed reactor. J Chem Technol Biot 83:829–835CrossRefGoogle Scholar
  38. Vaiopoulou E, Gikas P (2012) Effects of chromium on activated sludge and on the performance of wastewater treatment plants: a review. Water Res 46:549–570CrossRefGoogle Scholar
  39. van der Meer JR, van Neerven AR, de Vries EJ, de Vos WM, Zehnder AJ (1991) Cloning and characterization of plasmid-encoded genes for the degradation of 1,2-dichloro-, 1,4-dichloro-, and 1,2,4-trichlorobenzene of Pseudomonas sp. strain P51. J Bacteriol 173:6–15CrossRefGoogle Scholar
  40. Viamajala S, Peyton BM, Apel WA, Petersen JN (2002) Chromate reduction in Shewanella oneidensis MR-1 is an inducible process associated with anaerobic growth. Biotechnol Prog 18:290–295CrossRefGoogle Scholar
  41. Viti C, Mini A, Ranalli G, Lustrato G, Giovannetti L (2006) Response of microbial communities to different doses of chromate in soil microcosms. Appl Soil Ecol 34:125–139CrossRefGoogle Scholar
  42. Wielgosiński G, Grochowalski A, Machej T, Pająk T, Ćwiąkalski W (2007) Catalytic destruction of 1,2-dichlorobenzene on V2O5–WO3/Al2O3–TiO2 catalyst. Chemosphere 67:S150–S154CrossRefGoogle Scholar
  43. Yee N, Benning LG, Phoenix VR, Ferris FG (2004) Characterization of metal–cyanobacteria sorption reactions: a combined macroscopic and infrared spectroscopic investigation. Environ Sci Technol 38:775–782CrossRefGoogle Scholar
  44. Zhong L, Lai CY, Shi LD, Wang KD, Dai YJ, Liu YW, Ma F, Rittmann BE, Zheng P, Zhao HP (2017) Nitrate effects on chromate reduction in a methane-based biofilm. Water Res 115:130–137CrossRefGoogle Scholar
  45. Ziagova M, Liakopoulou-Kyriakides M (2007) Comparison of cometabolic degradation of 1,2-dichlorobenzene by Pseudomonas sp. and Staphylococcus xylosus. Enzyme Microb Technol 40:1244–1250CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  • Weihua Xu
    • 1
    • 2
    Email author
  • Guofeng Duan
    • 1
    • 2
  • Yunguo Liu
    • 1
    • 2
  • Guangming Zeng
    • 1
    • 2
  • Xin Li
    • 1
    • 2
  • Jie Liang
    • 1
    • 2
  • Wei Zhang
    • 1
    • 2
  1. 1.College of Environmental Science and EngineeringHunan UniversityChangshaPeople’s Republic of China
  2. 2.Key Laboratory of Environmental Biology and Pollution Control (Hunan University)Ministry of EducationChangshaPeople’s Republic of China

Personalised recommendations