Advertisement

Biodegradation

, Volume 29, Issue 6, pp 593–603 | Cite as

Characteristics and metabolic pathway of acetamiprid biodegradation by Fusarium sp. strain CS-3 isolated from soil

  • Zhoukun Shi
  • Weiliang Dong
  • Fengxue Xin
  • Jiawei Liu
  • Xinhai Zhou
  • Fanli Xu
  • Ziyao Lv
  • Jiangfeng Ma
  • Wenming Zhang
  • Yan Fang
  • Min Jiang
Original Paper
  • 27 Downloads

Abstract

An acetamiprid-degrading fungus was isolated from contaminated soil and identified as Fusarium sp. strain CS-3 based on physiological, biochemical, and molecular analyses. Strain CS-3 exploited 50 mg/L as the sole carbon source in liquid culture, removing 98% in 96 h. Strain CS-3 retained its acetamiprid degradation abilities over a wide range of pH (5.0–8.0) and temperature (20–42 °C). HPLC–MS analysis showed that N′-[(6-chloropyridin-3-yl)methyl]-N-methylacetamide, 2-chloro-5-hydroxymethylpyridine, and 6-chloronicotinic acid were identified as the most predominant metabolites, forming the basis for a newly described acetamiprid degradation pathway. Strain CS-3 efficiently degraded 99.6% of 50 mg/kg acetamiprid in soil, indicating potential for soil remediation.

Graphical abstract

Keywords

Acetamiprid 6-Chloronicotinic acid Fusarium sp. Strain CS-3 Acetamiprid-contaminated soil remediation 

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 31700092, No. 21727818, No. 21390200, No. 21706125, No. 21706124), the Jiangsu Province Natural Science Foundation for Youths (No. BK20170997, No. BK20170993), The Key Science and Technology Project of Jiangsu Province (No. BE2016389), The Project of State Key Laboratory of Materials Oriented Chemical Engineering (KL17-09), and The Jiangsu Synergetic Innovation Center for Advanced Bio-Manufacture (XTE1834).

Supplementary material

10532_2018_9855_MOESM1_ESM.pptx (171 kb)
Supplementary material 1 (PPTX 171 kb)

References

  1. Ahuactzin-Pérez M, Tlecuitl-Beristain S, García-Dávila J, González-Pérez M, Gutiérrez-Ruíz MC, Sánchez C (2016) Degradation of di(2-ethyl hexyl) phthalate by Fusarium culmorum: kinetics, enzymatic activities and biodegradation pathway based on quantum chemical modeling pathway based on quantum chemical modeling. Sci Total Environ 566:1186–1193CrossRefGoogle Scholar
  2. Anasontzis GE, Zerva A, Stathopoulou PM, Haralampidis K, Diallinas G, Karagouni AD, Hatzinikolaou DG (2011) Homologous overexpression of xylanase in Fusarium oxysporum increases ethanol productivity during consolidated bioprocessing (CBP) of lignocellulosics. J Biotechnol 152:16–23CrossRefGoogle Scholar
  3. Banić ND, Abramović BF, Šojić DV, Krstić JB, Finčur NL, Bočković IP (2016) Efficiency of neonicotinoids photocatalytic degradation by using annular slurry reactor. Chem Eng J 286:184–190CrossRefGoogle Scholar
  4. Benimeli CS, Castro GR, Chaile AP, Amoroso MJ (2007) Lindane uptake and degradation by aquatic Streptomyces sp. strain M7. Int Biodeterior Biodegrad 59:148–155CrossRefGoogle Scholar
  5. Brunet J, Badiou A, Belzunces LP (2005) In vivo metabolic fate of [14C]-acetamiprid in six biological compartments of the honeybee, Apis mellifera L. Pest Manag Sci 61:742–748CrossRefGoogle Scholar
  6. Carra I, Sánchez Pérez JA, Malato S, Autin O, Jefferson B, Jarvis P (2016) Performance of different advanced oxidation processes for tertiary wastewater treatment to remove the pesticide acetamiprid. J Chem Technol Biotechnol 91:72–81CrossRefGoogle Scholar
  7. Chakroun S, Ezzi L, Grissa I, Kerkeni E, Neffati F, Bhouri R, Sallem A, Najjar MF, Hassine M, Mehdi M, Haouas Z, Ben Cheikh H (2016) Hematological, biochemical, and toxicopathic effects of subchronic acetamiprid toxicity in Wistar rats. Environ Sci Pollut Res 23:25191–25199CrossRefGoogle Scholar
  8. Chen T, Dai Y, Ding J, Yuan S, Ni J (2008) N-demethylation of neonicotinoid insecticide acetamiprid by bacterium Stenotrophomonas maltophilia CGMCC 1.1788. Biodegradation 19:651–658CrossRefGoogle Scholar
  9. Cruz-Alcalde A, Sans C, Esplugas S (2017) Priority pesticides abatement by advanced water technologies: the case of acetamiprid removal by ozonation. Sci Total Environ 599:1454–1461CrossRefGoogle Scholar
  10. Dong W, Chen Q, Hou Y, Li S, Zhuang K, Huang F, Zhou J, Li Z, Wang J, Fu L, Zhang Z, Huang Y, Wang F, Cui Z (2015) Metabolic pathway involved in 2-methyl-6-ethylaniline degradation by Sphingobium sp. strain MEA3-1 and the cloning of a novel flavin-dependent monooxygenase system meaBA. Appl Environ Microbiol 81(24):8254–8264CrossRefGoogle Scholar
  11. Elbert A, Haas M, Springer B, Thielert W, Nauen R (2008) Applied aspects of neonicotinoid uses in crop protection. Pest Manag Sci 64:1099–1105CrossRefGoogle Scholar
  12. Fan H, Zhou W, Wang X, Luo Z, He F (2013) Biological characteristics of Fusarium oxysporum f. sp. niveum isolated from watermelon cultivated in plastic greenhouse and indoor toxicity determination of different fungicides in Hainan province of China. Plant Dis Pests 42(5):1146–1149Google Scholar
  13. Groenewald S, van den Berg N, Marasas WFO, Viljoen A (2006) Biological, physiological and pathogenic variation in a genetically homogenous population of Fusarium oxysporum f. sp. cubense. Australas Plant Pathol 35:401CrossRefGoogle Scholar
  14. Gupta S, Gajbhiye VT (2007) Persistence of acetamiprid in soil. Bull Environ Contam Toxicol 78:349–352CrossRefGoogle Scholar
  15. Gupta S, Gajbhiye VT, Gupta RK (2008) Effect of light on the degradation of two neonicotinoids viz acetamiprid and thiacloprid in soil. Bull Environ Contam Toxicol 81:185–189CrossRefGoogle Scholar
  16. Hussain S, Hartley CJ, Shettigar M, Pandey G (2016) Bacterial biodegradation of neonicotinoid pesticides in soil and water systems. FEMS Microbiol Lett.  https://doi.org/10.1093/femsle/fnw252 CrossRefPubMedGoogle Scholar
  17. Jiang J, Zhang R, Li R, Gu J, Li S (2007) Simultaneous biodegradation of methyl parathion and carbofuran by a genetically engineered microorganism constructed by mini-Tn5 transposon. Biodegradation 18:403–412CrossRefGoogle Scholar
  18. Kandil MM, Trigo C, Koskinen WC, Sadowsky MJ (2015) Isolation and characterization of a novel imidacloprid-degrading Mycobacterium sp. strain MK6 from an egyptian soil. J Agric Food Chem 63:4721–4727CrossRefGoogle Scholar
  19. Li J, Cai W, Zhu L (2011) The characteristics and enzyme activities of 4-chlorophenol biodegradation by Fusarium sp. Bioresour Technol 102:2985–2989CrossRefGoogle Scholar
  20. Li C, Zhang J, Wu Z, Cao L, Yan X, Li S (2012) Biodegradation of buprofezin by Rhodococcus sp. strain YL-1 isolated from rice field soil. J Agric Food Chem 60:2531–2537CrossRefGoogle Scholar
  21. Li H, Qiao Y, Li J, Fang H, Fan D, Wang W (2016) A sensitive and label-free photoelectrochemical aptasensor using Co-doped ZnO diluted magnetic semiconductor nanoparticles. Biosens Bioelectron 77:378–384CrossRefGoogle Scholar
  22. Liu X, Xu X, Li C, Zhang H, Fu Q, Shao X, Ye Q, Li Z (2015) Degradation of chiral neonicotinoid insecticide cycloxaprid in flooded and anoxic soil. Chemosphere 119:334–341CrossRefGoogle Scholar
  23. Mao H, Liu H, Gao Z, Su T, Wang Z (2015) Biodegradation of poly (butylene succinate) by Fusarium sp. FS1301 and purification and characterization of poly (butylene succinate) depolymerase. Polym Degrad Stab 114:1–7CrossRefGoogle Scholar
  24. Matsuda K, Kanaoka S, Akamatsu M, Sattelle DB (2009) Diverse actions and target-site selectivity of neonicotinoids: structural insights. Mol Pharmacol 76:1–10CrossRefGoogle Scholar
  25. Naiki T, Morita Y (1983) The population of spinach wilt fungus, Fusarium oxysporum f. sp. spinaciae, and the wilt incidence in soil. Jpn J Phytopathol 49(4):539–544CrossRefGoogle Scholar
  26. Peng W, Ding F, Peng Y (2016) In vitro evaluation of the conjugations of neonicotinoids with transport protein: photochemistry, ligand docking and molecular dynamics studies. RSC Adv 6:1826–1843CrossRefGoogle Scholar
  27. Phugare SS, Jadhav JP (2015) Biodegradation of acetamiprid by isolated bacterial strain Rhodococcus sp. BCH2 and toxicological analysis of its metabolites in silkworm (Bombax mori). Clean-Soil Air Water 43(2):296–304CrossRefGoogle Scholar
  28. Phugare SS, Kalyani DC, Gaikwad YB, Jadhav JP (2013) Microbial degradation of imidacloprid and toxicological analysis of its biodegradation metabolites in silkworm (Bombyx mori). Chem Eng J 230:27–35CrossRefGoogle Scholar
  29. Sagar V, Singh DP (2011) Biodegradation of lindane pesticide by no white-rots soil fungus Fusarium sp. World J Microbiol Biotechnol 27:1747–1754CrossRefGoogle Scholar
  30. Senyildiz M, Kilinc A, Ozden S (2016) Effects of neonicotinoid insecticides in cytotoxicity and DNA damage in HepG2 and SH-SY5Y cells. Toxicol Lett 258:S237–S238Google Scholar
  31. Sun SL, Lu TQ, Yang WL, Guo JJ, Rui X, Mao SY (2016) Characterization of a versatile nitrile hydratase of the neonicotinoid thiacloprid-degrading bacterium Ensifer meliloti CGMCC 7333. RSC Adv 6(19):15501–15508CrossRefGoogle Scholar
  32. Suphang C, Geoffrey MG, Polkit S, Prakitsin S, Jittra P, Alisa SV (2006) Biodegradation of benzo(a)pyrene by a newly isolated Fusarium sp. Fed Eur Microbiol Soc 262:99–106CrossRefGoogle Scholar
  33. Tang H, Li J, Hu H, Xu P (2012) A newly isolated strain of Stenotrophomonas sp. hydrolyzes acetamiprid, a synthetic insecticide. Process Biochem 47:1820–1825CrossRefGoogle Scholar
  34. Wang J, Hirai H, Kawagishi H (2012) Biotransformation of acetamiprid by the white-rot fungus Phanerochaete sordida YK-624. Appl Microbiol Biotechnol 93:831–835CrossRefGoogle Scholar
  35. Wang G, Yue W, Liu Y, Li F, Xiong M, Zhang H (2013a) Biodegradation of the neonicotinoid insecticide acetamiprid by bacterium Pigmentiphaga sp. strain AAP-1 isolated from soil. Bioresour Technol 138:359–368CrossRefGoogle Scholar
  36. Wang G, Zhao Y, Gao H, Yue W, Xiong M, Li F, Zhang H, Ge W (2013b) Co-metabolic biodegradation of acetamiprid by Pseudoxanthomonas sp. AAP-7 isolated from a long-term acetamiprid-polluted soil. Bioresour Technol 150:259–265CrossRefGoogle Scholar
  37. Wang G, Zhu D, Xiong M, Zhang H, Liu Y (2016) Construction and analysis of an intergeneric fusion from Pigmentiphaga sp. strain AAP-1 and Pseudomonas sp. CTN-4 for degrading acetamiprid and chlorothalonil. Environ Sci Pollut Res 23:13235–13244CrossRefGoogle Scholar
  38. Xu L, Liu Y, Zhou L, Wu J (2010) Optimization of a liquid medium for beauvericin production in Fusarium redolens Dzf2 mycelial culture. Biotechnol Bioprocess Eng 15:460–466CrossRefGoogle Scholar
  39. Yang H, Wang X, Zheng J, Wang G, Hong Q, Li S, Li R, Jiang J (2013) Biodegradation of acetamiprid by Pigmentiphaga sp. D-2 and the degradation pathway. Int Biodeterior Biodegrad 85:95–102CrossRefGoogle Scholar
  40. Zhou L, Zhang L, Sun S, Ge F, Mao S, Ma Y, Liu Z, Dai Y, Yuan S (2014) Degradation of the neonicotinoid insecticide acetamiprid via the N-carbamoylimine derivate (IM-1-2) mediated by the nitrile hydratase of the nitrogen-fixing bacterium Ensifer meliloti CGMCC 7333. J Agric Food Chem 62(41):9957–9964CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical EngineeringNanjing Tech UniversityNanjingPeople’s Republic of China
  2. 2.Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)Nanjing Tech UniversityNanjingPeople’s Republic of China

Personalised recommendations