Advertisement

Overproduction of rhamnolipid by fed-batch cultivation of Pseudomonas aeruginosa in a lab-scale fermenter under tight DO control

  • Shayesteh Bazsefidpar
  • Babak MokhtaraniEmail author
  • Reza Panahi
  • Hamidreza Hajfarajollah
Original Paper

Abstract

Rhamnolipids are one of the most well-known classes of biosurfactants having wide applications in various industries due to low toxicity, high biodegradability, and environmentally friendly. Dissolved oxygen (DO) concentration has the crucial effect on rhamnolipids production, particularly through fed-batch cultivation. In this study, the effect of different levels of DO concentrations on rhamnolipid production by Pseudomonas aeruginosa in both batch and fed-batch fermentation was investigated in a lab-scale fermenter under precise DO control. A maximal rhamnolipid production of 22.5 g/l was obtained at a DO concentration of 40% in batch fermentation. In order to achieve the high rhamnolipid production, a fed-batch operation under tight DO control of 40% was conducted. As a result, the overall rhamnolipid production and productivity reached to 240 g/l and 0.9 (g/l h), corresponding to a 10.7 and 4.8-fold improvement compared to the batch experiments. The high level of rhamnolipid production via the fed-batch cultivation can be attributed to both DO concentration and the feeding strategy. This achievement is promising for the production of rhamnolipid in industrial scale.

Keywords

Rhamnolipid Biosurfactant Pseudomonas aeruginosa Dissolved oxygen Fed-batch fermentation Productivity 

Supplementary material

10532_2018_9866_MOESM1_ESM.docx (1.6 mb)
Supplementary material 1 (DOCX 1649 kb)

References

  1. Abbasi H, Hamedi MM, Lotfabad TB et al (2012) Biosurfactant-producing bacterium, Pseudomonas aeruginosa MA01 isolated from spoiled apples: physicochemical and structural characteristics of isolated biosurfactant. JBIOSC 113:211–219Google Scholar
  2. Anjum F, Gautam G, Edgard G, Negi S (2016) Biosurfactant production through Bacillus sp. MTCC 5877 and its multifarious applications in food industry. Bioresour Technol 213:262–269CrossRefGoogle Scholar
  3. Anvari S, Hajfarajollah H, Mokhtarani B, Noghabi KA (2015) Physiochemical and thermodynamic characterization of lipopeptide biosurfactant secreted by Bacillus tequilensis HK01. RSC Adv 5:91836–91845CrossRefGoogle Scholar
  4. Bagheri Lotfabad T, Ebadipour N, Roostaazad R et al (2017) Two schemes for production of biosurfactant from Pseudomonas aeruginosa MR01: applying residues from soybean oil industry and silica sol–gel immobilized cells. Colloids Surf B Biointerfaces 152:159–168CrossRefGoogle Scholar
  5. Behrens B, Engelen J, Tiso T et al (2016) Characterization of rhamnolipids by liquid chromatography/mass spectrometry after solid-phase extraction. Anal Bioanal Chem 408:2505–2514CrossRefGoogle Scholar
  6. Chen SY, Wei YH, Chang JS (2007) Repeated pH-stat fed-batch fermentation for rhamnolipid production with indigenous Pseudomonas aeruginosa S2. Appl Microbiol Biotechnol 76:67–74CrossRefGoogle Scholar
  7. Chong H, Li Q (2017) Microbial production of rhamnolipids: opportunities, challenges and strategies. Microb Cell Fact 16:1–12CrossRefGoogle Scholar
  8. Fadhile Almansoory A, Abu Hasan H, Idris M et al (2017) Biosurfactant production by the hydrocarbon-degrading bacteria (HDB) Serratia marcescens: optimization using central composite design (CCD). J Ind Eng Chem 47:272–280CrossRefGoogle Scholar
  9. Gámez OR, Rodríguez AA, Cadre JV, Gómez JGC (2017) Screening and characterization of biosurfactant-producing bacteria isolated from contaminated soils with oily wastes. J Environ Treat Tech 5:5–11Google Scholar
  10. Garcia-Ochoa F, Gomez E (2009) Bioreactor scale-up and oxygen transfer rate in microbial processes: an overview. Biotechnol Adv 27:153–176CrossRefGoogle Scholar
  11. Hajfarajollah H, Mokhtarani B, Noghabi KA (2014) Newly antibacterial and antiadhesive lipopeptide biosurfactant secreted by a probiotic strain, propionibacterium freudenreichii. Appl Biochem Biotechnol 174:2725–2740CrossRefGoogle Scholar
  12. He N, Wu T, Jiang J et al (2017) Toward high-efficiency production of biosurfactant rhamnolipids using sequential fed-batch fermentation based on a fill-and-draw strategy. Colloids Surf B Biointerfaces 157:317–324CrossRefGoogle Scholar
  13. Ma KY, Sun MY, Dong W et al (2016) Effects of nutrition optimization strategy on rhamnolipid production in a Pseudomonas aeruginosa strain DN1 for bioremediation of crude oil. Biocatal Agric Biotechnol 6:144–151CrossRefGoogle Scholar
  14. Manivasagan P, Sivasankar P, Venkatesan J et al (2014) Optimization, production and characterization of glycolipid biosurfactant from the marine actinobacterium, Streptomyces sp. MAB36. Bioprocess Biosyst Eng 37:783–797CrossRefGoogle Scholar
  15. Mondal MH, Malik S, Roy A et al (2015) Modernization of surfactant chemistry in the age of Gemini and biosurfactants: a review. RSC Adv 5:92707–92718CrossRefGoogle Scholar
  16. Mondal MH, Sarkar A, Maiti TK, Saha B (2017) Microbial assisted (Pseudomonas sp.) production of novel biosurfactant rhamnolipids and its characterisation by different spectral studies. J Mol Liq 242:873–878CrossRefGoogle Scholar
  17. Morikawa M, Hirata Y, Imanaka T (2000) A study on the structure & function relationship of lipopeptide biosurfactants. Biochim Biophys Acta (BBA) Mol Cell Biol Lipids 1488:211–218CrossRefGoogle Scholar
  18. Mukherjee S, Das P, Sen R (2006) Towards commercial production of microbial surfactants. Trends Biotechnol 24:509–515CrossRefGoogle Scholar
  19. Ochsner UA, Reiser J, Fiechter A, Witholt B (1995) Production of Pseudomonas aeruginosa rhamnolipid biosurfactants in heterologous hosts. Appl Environ Microbiol 61:3503–3506Google Scholar
  20. Pacheco GJ, Reis RS, Fernandes ACLB et al (2012) Rhamnolipid production: effect of oxidative stress on virulence factors and proteome of Pseudomonas aeruginosa PA1. Appl Microbiol Biotechnol 95:1519–1529CrossRefGoogle Scholar
  21. Pacwa-Płociniczak M, Płaza GA, Piotrowska-Seget Z, Cameotra SS (2011) Environmental applications of biosurfactants: recent advances. Int J Mol Sci 12:633–654CrossRefGoogle Scholar
  22. Reis RS, Pereira AG, Neves BC, Freire DMG (2011) Gene regulation of rhamnolipid production in Pseudomonas aeruginosa—a review. Bioresour Technol 102:6377–6384CrossRefGoogle Scholar
  23. Sabra W, Kim EJ, Zeng AP (2002) Physiological responses of Pseudomonas aeruginosa PAO1 to oxidative stress in controlled microaerobic and aerobic cultures. Microbiology 148:3195–3202CrossRefGoogle Scholar
  24. Sathi Reddy K, Yahya Khan M, Archana K et al (2016) Utilization of mango kernel oil for the rhamnolipid production by Pseudomonas aeruginosa DR1 towards its application as biocontrol agent. Bioresour Technol 221:291–299CrossRefGoogle Scholar
  25. Singh A, Van Hamme JD, Ward OP (2007) Surfactants in microbiology and biotechnology: Part 2. Application aspects. Biotechnol Adv 25:99–121CrossRefGoogle Scholar
  26. Sodagari M, Invally K, Ju LK (2018) Maximize rhamnolipid production with low foaming and high yield. Enzyme Microb Technol 110:79–86CrossRefGoogle Scholar
  27. Vanavil B (2014) Studies on the effects of bioprocess parameters and kinetics of rhamnolipid production by P. aeruginosa NITT 6L. Chem Biochem Eng Q J 28:383–390CrossRefGoogle Scholar
  28. Vecino X, Barbosa-Pereira L, Devesa-Rey R et al (2015) Optimization of liquid–liquid extraction of biosurfactants from corn steep liquor. Bioprocess Biosyst Eng 38:1629–1637CrossRefGoogle Scholar
  29. Vecino X, Rodríguez-López L, Gudiña EJ et al (2017) Vineyard pruning waste as an alternative carbon source to produce novel biosurfactants by Lactobacillus paracasei. J Ind Eng Chem 55:40–49CrossRefGoogle Scholar
  30. Vera ECS, de Azevedo PODS, Domínguez JM, Oliveira RP (2018) Optimization of biosurfactant and bacteriocin-like inhibitory substance (BLIS) production by Lactococcus lactis CECT-4434 from agroindustrial waste. Biochem Eng J 133:168–178CrossRefGoogle Scholar
  31. Wu J, Zhang J, Wang P et al (2017) Production of rhamnolipids by semi-solid-state fermentation with Pseudomonas aeruginosa RG18 for heavy metal desorption. Bioprocess Biosyst Eng 40:1611–1619CrossRefGoogle Scholar
  32. Yin H, Qiang J, Jia Y et al (2009) Characteristics of biosurfactant produced by Pseudomonas aeruginosa S6 isolated from oil-containing wastewater. Process Biochem 44:302–308CrossRefGoogle Scholar
  33. Zhao J, Wu Y, Alfred AT et al (2013) Chemical structures and biological activities of rhamnolipid biosurfactants produced by Pseudomonas aeruginosa M14808. J Chem Pharm Res 5:177–182Google Scholar
  34. Zhu L, Yang X, Xue C et al (2012) Enhanced rhamnolipids production by Pseudomonas aeruginosa based on a pH stage-controlled fed-batch fermentation process. Bioresour Technol 117:208–213CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Shayesteh Bazsefidpar
    • 1
  • Babak Mokhtarani
    • 1
    Email author
  • Reza Panahi
    • 1
  • Hamidreza Hajfarajollah
    • 1
  1. 1.Chemistry and Chemical Engineering Research Center of IranTehranIran

Personalised recommendations