Advertisement

Will the emblematic southern conifer Araucaria angustifolia survive to climate change in Brazil?

  • Monik Begname Castro
  • Ana Carolina Maioli Campos BarbosaEmail author
  • Patrícia Vieira Pompeu
  • Pedro V. Eisenlohr
  • Gabriel de Assis Pereira
  • Deborah Mattos Guimarães Apgaua
  • João Carlos Pires-Oliveira
  • João Paulo Rodrigues Alves Delfino Barbosa
  • Marco Aurélio Leite Fontes
  • Rubens Manoel dos Santos
  • David Yue Phin Tng
Original Paper

Abstract

Conifer forests dominated by Araucaria pines (Araucaria angustifolia) are emblematic of the humid forests in the southeast of Brazil, South America. However, these forests are highly fragmented and threatened by climate change. Despite the ecological and cultural importance of the dominant species (A. angustifolia), our knowledge of its climatic niche is incomplete. We aimed to understand the environmental drivers of the distribution and the climatic vulnerability of A. angustifolia in Brazil by modelling the extent of suitable climatic niches available for the species under the current climate and future climate scenarios. The potential distribution predicted by our model for the present was consistent with the real distribution of this species. However, our projections for future distributions show a decline in suitable climatic niches for the species, and a tendency for the species to be confined to high altitude mountain ranges and plateaus of south and southeast Brazil. Critically, most of the current protected areas will cease to harbor suitable climatic niches for the species. We conclude that prioritizing and expanding protected areas in important mountain ranges will be essential for protecting of the species in situ and to safeguard it from further habitat loss. Further research on population-level physiological responses of the species to climatic change and the role of biotic interactions will help optimize future modelling work.

Keywords

Brazilian pine Global warming Extinction risk Potential species distribution modelling Climatic envelope 

Notes

Funding

This work was supported by the Fundação Grupo Boticário de Conservação à Natureza [Grant Number: 1015_20142]; and the Fundação de Amparo à Pesquisa de Minas Gerais [Grant Number APQ-01960-12]. Monik Castro was supported by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior; David Tng was supported by an Australian Endeavour Research Fellowship; Deborah Apgaua was supported by a Schlumberger Faculty of the Future fellowship.

References

  1. Alvares CA, Stape JL, Sentelhas PC, Gonçalves JLM, Sparovek G (2013) Köppen’s climate classification map for Brazil. Meteor Z 105:711–728.  https://doi.org/10.1127/0941-2948/2013/0507 CrossRefGoogle Scholar
  2. Aslam MS, Choudhary BA, Uzair M, Ijaz AS (2013) Phytochemical and ethno-pharmacological review of the genus Araucaria–review. Trop J Pharm Res 12:651–659.  https://doi.org/10.4314/tjpr.v12i4.31 CrossRefGoogle Scholar
  3. Backes A (2009) Distribuição geográfica atual da floresta com araucária: condicionamento climático. In: Fonseca CR, Souza AF, Leal-Zanchet AM, Dutra TL, Backes A, Ganade G (eds) Floresta com Araucária: ecologia, conservação e desenvolvimento sustentável. Holos, Ribeirão Preto, pp 39–44Google Scholar
  4. Barbet-Massin M, Jiguet F, Albert CH, Thuiller W (2012) Selecting pseudo-absences for species distribution models: how, where and how many? Methods Ecol Evol 3:327–338.  https://doi.org/10.1111/j.2041-210X.2011.00172.x CrossRefGoogle Scholar
  5. Bauermann SG, Behling H (2009) Dinâmica paleo vegetacional da floresta com araucária a partir do final do pleistoceno: o que mostra a palinologia. In: Fonseca CR, Souza AF, Leal-Zanchet AM, Dutra TL, Backes A, Ganade G (eds) Floresta com Araucária: ecologia, conservação e desenvolvimento sustentável. Holos, Ribeirão Preto, pp 35–38Google Scholar
  6. Behling H (2002) South and southeast Brazilian grasslands during Late Quaternary times: a synthesis. Palaeogeogr Palaeoclimatol Palaeoecol 177:19–27.  https://doi.org/10.1016/S0031-0182(01)00349-2 CrossRefGoogle Scholar
  7. Brasil, Instituto Brasileiro do Meio Ambiente e dos Recursos Naturais Renováveis –IBAMA (2008) Lista Oficial de Espécies da Flora Brasileira Ameaçada de Extinção. http://www.mma.gov.br/estruturas/ascom_boletins/_arquivos/83_19092008034949.pdf/. Accessed 16 June 2018
  8. Bruner AG, Gullison RE, Rice RE, Fonseca GAB (2001) Effectiveness of parks in protecting tropical biodiversity. Science 291:125–127.  https://doi.org/10.1126/science.291.5501.125 CrossRefPubMedGoogle Scholar
  9. Câmara IG (2003) Brief history of conservation in the Atlantic Forest. In: Galindo-Leal C, Câmara IG (eds) The Atlantic Forest of South America: biodiversity status, threats, and outlook. CABS and Island Press, Washington, pp 31–42Google Scholar
  10. Carnaval AC (2018) Biome stability in South America over the last 30 kyr: inferences from long-term vegetation dynamics and habitat modelling. Glob Ecol Biogeogr 27:285–297.  https://doi.org/10.1111/geb.12694 CrossRefGoogle Scholar
  11. Carnaval AC, Waltari E, Rodrigues MT, Rosauer D, VanDerWal J, Damasceno R, Prates I, Strangas M, Spanos Z, Rivera D, Pie MR, Firkowski CR, Bornschein MR, Ribeiro LF, Moritz C (2014) Prediction of phylogeographic endemism in an environmentally complex biome. Proc Roy Soc B 281:20141461.  https://doi.org/10.1098/rspb.2014.1461 CrossRefGoogle Scholar
  12. Cassana FF, Dillenburg LR (2012) The periodic wetting of leaves enhances water relations and growth of the long-lived conifer Araucaria angustifolia. Plant Biol 5:75–83.  https://doi.org/10.1111/j.1438-8677.2012.00600.x CrossRefGoogle Scholar
  13. Chilcott C, Hilbert D, Howden M (2003) Modelling biodiversity and climate change. In: Howden M, Hughes L, Dunlop M, Zethoven I, Hilbert D, Chilcott C (eds) Climate change impacts on biodiversity in Australia: outcomes of a workshop sponsored by the Biological Diversity Advisory Committee. Environment Australia, Canberra, pp 63–66Google Scholar
  14. Costa GC, Hampe A, Ledru MP, Martinez PA, Mazzochini GG, Shepard DB, Werneck FP, Moritz C, Carnaval AC (2018) Biome stability in South America over the last 30 kyr: Inferences from long-term vegetation dynamics and habitat modelling. Glob Ecol Biogeogr 27:285–297.  https://doi.org/10.1111/geb.12694 CrossRefGoogle Scholar
  15. Costion CM, Simpson L, Pert PL, Carlsen MM, Kress WJ, Crayn D (2015) Will tropical mountaintop plant species survive climate change? Identifying key knowledge gaps using species distribution modelling in Australia. Biol Conserv 191:322–330.  https://doi.org/10.1016/j.biocon.2015.07.022 CrossRefGoogle Scholar
  16. Eisenlohr PV, Oliveira-Filho AT (2015) Revisiting patterns of tree species composition and their driving forces in the Atlantic Forests of Southeastern Brazil. Biotropica 47:689–701.  https://doi.org/10.1111/btp.12254 CrossRefGoogle Scholar
  17. Elith J, Leathwick JR (2009) Species distribution models: ecological explanation and prediction across space and time. Annu Rev Ecol Evol Syst 40:677–697.  https://doi.org/10.1146/annurev.ecolsys.110308.120159 CrossRefGoogle Scholar
  18. Engels W (2009) Brazil’s Araucaria Rainforest: climate change and reforestation. In: Van Bodegom AJ, Savenije H, Wit M (eds) Forests and climate change: adaptation and mitigation. Tropenbos International, Wageningen, pp 114–118Google Scholar
  19. Fonseca CR, Souza AF, Leal-Zanchet AM, Dutra TL, Backes A, Ganade G (eds) (2009) Floresta com Araucária: ecologia, conservação e desenvolvimento sustentável. Holos, Ribeirão PretoGoogle Scholar
  20. Franklin J (2010) Mapping species distribution. University Press, CambridgeCrossRefGoogle Scholar
  21. Garcia LG, Ferraz SFB, Alvares CA, Ferraz KMPMB, Higa RCV (2014) Modelagem da aptidão climática do Eucalyptus grandis frente aos cenários de mudanças climáticas no Brasil. Sci For 42:503–511Google Scholar
  22. GBIF.org (2016) GBIF Occurrence Download.  https://doi.org/10.15468/dl.ywhpmz
  23. Gentry AH (1992) Tropical forest biodiversity: distributional patterns and their conservational significance. Oikos 63:19–28.  https://doi.org/10.2307/3545512 CrossRefGoogle Scholar
  24. Giraudo AR, Krauczuk E, Arzamendia V, Povedano H (2003) Critical analysis of protected areas in the Atlantic Forest of Argentina. In: Galindo-Leal C, Câmara IG (eds) The Atlantic Forest of South America: biodiversity status, threats, and outlook. CABS and Island Press, Washington, pp 245–261Google Scholar
  25. Guisan A, Thuiller W (2005) Predicting species distribution: offering more than simple habitat models. Ecol Lett 8:993–1009.  https://doi.org/10.1111/j.1461-0248.2005.00792.x CrossRefGoogle Scholar
  26. Hijmans RJ, Graham CH (2006) The ability of climate envelope models to predict the effect of climate change on species distributions. Glob Change Biol 12:2272–2281.  https://doi.org/10.1111/j.1365-2486.2006.01256.x CrossRefGoogle Scholar
  27. Huang C, Kim S, Altstatt A, Townshend JRG, Davis P, Song K, Tucker CJ, Rodas O, Yanosky A, Clay R, Musinsky J (2007) Rapid loss of Paraguay´s Atlantic forest and the status of protected areas—a landsat assessment. Remote Sens Environ 106:460–466.  https://doi.org/10.1016/j.rse.2006.09.016 CrossRefGoogle Scholar
  28. Huberty CJ (1994) Applied Discriminant Analysis (Carl J. Huberty). Wiley, New YorkGoogle Scholar
  29. Indrusiak C, Monteiro S (2009) Unidades de Conservação na área de distribuição da Araucária. In: Fonseca CR, Souza AF, Leal-Zanchet AM, Dutra TL, Backes A, Ganade G (eds) Floresta com Araucária: ecologia, conservação e desenvolvimento sustentável. Holos, Ribeirão Preto, pp 253–265Google Scholar
  30. Instituto Brasileiro de Geografia e Estatística- IBGE (2014) Geociências. http://downloads.ibge.gov.br/downloads_geociencias.htm/. Accessed 16 June 2018
  31. IPCC (2013) Summary for policymakers. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge and New YorkGoogle Scholar
  32. Jarenkow JA, Budke JC (2009) Padrões florísticos e análise estrutural de remanescentes de florestas com araucária no Brasil. In: Fonseca CR, Souza AF, Leal-Zanchet AM, Dutra TL, Backes A, Ganade G (eds) Floresta com Araucária: ecologia, conservação e desenvolvimento sustentável. Holos, Ribeirão Preto, pp 113–126Google Scholar
  33. Käffer M, Marcelli MPK (2009) Líquens da floresta com araucária. In: Fonseca CR, Souza AF, Leal-Zanchet AM, Dutra TL, Backes A, Ganade G (eds) Floresta com Araucária: ecologia, conservação e desenvolvimento sustentável. Holos, Ribeirão Preto, pp 153–160Google Scholar
  34. Karger DN, Conrad O, Böhner J, Kawohl T, Kreft H, Soria-Auza RW, Zimmermann NE, Linder HP, Kessler M (2017) Climatologies at high resolution for the earth’s land surface areas. Sci Data 4:1–20.  https://doi.org/10.1038/sdata.2017.122 CrossRefGoogle Scholar
  35. Kershaw P, Wagstaff B (2001) The southern conifer family Araucariaceae: history, status, and value for paleoenvironmental reconstruction. Annu Rev Ecol Evol Syst 32:397–414.  https://doi.org/10.1146/annurev.ecolsys.32.081501.114059 CrossRefGoogle Scholar
  36. Kriticos DJ, Randall RP (2001) A comparison of systems to analyse potential weed distributions. In: Groves RH, Panetta FD, Virtue JG (eds) Weed risk assessment. CSIRO Publishing, Collingwood, pp 61–79Google Scholar
  37. Laurance WF, Useche DC, Shoo LP et al (2011) Global warming, elevational ranges and the vulnerability of tropical biota. Biol Conserv 144:548–557.  https://doi.org/10.1016/j.biocon.2010.10.010 CrossRefGoogle Scholar
  38. Ledru MP, Stevenson J (2012) The rise and fall of the genus Araucaria: a southern hemisphere climatic connection. In: Haberle SG, David B (eds) Peopled landscapes: archaeological and biogeographic approaches to landscapes. ANU E Press, Canberra, pp 241–254Google Scholar
  39. Leite PF, Klein RM (1990) Vegetação. In: IBGE (ed) Geografia do Brasil, v 2, Região Sul. IBGE, Rio de Janeiro, pp 113–150Google Scholar
  40. Lemes P, Melo AS, Loyola RD (2014) Climate change threatens protected areas of the Atlantic Forest. Biodivers Conserv 23:357–368.  https://doi.org/10.1007/s10531-013-0605-2 CrossRefGoogle Scholar
  41. Leslie AB, Beaulieu JM, Rai HS, Crane PR, Donoghue MJ, Mathews S (2012) Hemisphere-scale differences in conifer evolutionary dynamics. Proc Natl Acad Sci USA 109:16217–16221.  https://doi.org/10.1073/pnas.1213621109 CrossRefPubMedGoogle Scholar
  42. Liu C, White M, Newell G (2013a) Selecting thresholds for the prediction of species occurrence with presence only data. J Biogeogr 40:778–789.  https://doi.org/10.1111/jbi.12058 CrossRefGoogle Scholar
  43. Liu C, White M, Newell G, Griffioen P (2013b) Species distribution modelling for conservation planning in Victoria, Australia. Ecol Modell 249:68–74.  https://doi.org/10.1016/j.ecolmodel.2012.07.003 CrossRefGoogle Scholar
  44. Marsden SJ, Whiffin M, Galetti M, Fielding A (2005) How well will Brazil’s system of Atlantic forest reserves maintain viable bird populations? Biodivers Conserv 14:2835–2853.  https://doi.org/10.1007/s10531-004-0219-9 CrossRefGoogle Scholar
  45. Mello AJM, Peroni N (2015) Cultural landscapes of the Araucaria Forests in the northern plateau of Santa Catarina. Brazil. J Ethnobiol Ethnomed 11:51.  https://doi.org/10.1186/s13002-015-0039-x CrossRefGoogle Scholar
  46. Mittermeier RA, Myers N, Thomsen JB, da Fonseca GAB, Olivieri S (1998) Biodiversity hotspots and major tropical wilderness areas: approaches to setting conservation priorities. Conserv Biol 12:516–520.  https://doi.org/10.1046/j.1523-1739.1998.012003516.x CrossRefGoogle Scholar
  47. Moreira M, Zucchi MI, Gomes JE, Alves-Pereira A, Cardoso EJ (2016) Araucaria angustifolia aboveground roots presented high arbuscular mycorrhizal fungal colonization and diversity in the Brazilian Atlantic Forest. Pedosphere 26:561–566.  https://doi.org/10.1016/S1002-0160(15)60065-0 CrossRefGoogle Scholar
  48. Moreira-Souza M, Trufem SF, Gomes-da-Costa SM, Cardoso EJ (2003) Arbuscular mycorrhizal fungi associated with Araucaria angustifolia (Bert.) O. Ktze. Mycorrhiza 13:211–215.  https://doi.org/10.1007/s00572-003-0221-1 CrossRefPubMedGoogle Scholar
  49. Mountain Research Initiative EDW Working Group (2015) Elevation-dependent warming in mountain regions of the world. Nat Clim Change 5:424–430.  https://doi.org/10.1038/nclimate2563 CrossRefGoogle Scholar
  50. Myers N, Mittermeier RA, Mittermeier CG, da Fonseca GAB, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858.  https://doi.org/10.1038/35002501 CrossRefPubMedPubMedCentralGoogle Scholar
  51. Nóbrega CC, de Marco P (2011) Unprotecting the rare species: a niche-based gap analysis for odonates in a core Cerrado area. Divers Distrib 17:491–505.  https://doi.org/10.1111/j.1472-4642.2011.00749.x CrossRefGoogle Scholar
  52. Oliveira HR, Cassemiro FAS (2013) Potenciais efeitos das mudanças climáticas futuras sobre a distribuição de um anuro da caatinga Rhinella granulosa (Anura, Bufonidae). Iheringia Sér Zool 103:272–279.  https://doi.org/10.1590/S0073-47212013000300010 CrossRefGoogle Scholar
  53. Oliveira-Filho AT (2009) Classificação das fitofisionomias da américa do sul cisandina tropical e subtropical: proposta de um novo sistema—prático e flexível—ou uma injeção a mais de caos? Rodriguésia 60:237–258CrossRefGoogle Scholar
  54. Oliveira-Filho AT (2017) NeoTropTree, Flora arbórea da Região Neotropical: um banco de dados envolvendo biogeografia, diversidade e conservação. http://www.icb.ufmg.br/treeatlan/. Acccessed 15 May 2017
  55. Oliveira-Filho AT, Fontes MAL (2000) Patterns of floristic differentiation among Atlantic forests in southeastern Brazil and the influence of climate. Biotropica 32:793–810.  https://doi.org/10.1111/j.1744-7429.2000.tb00619.x CrossRefGoogle Scholar
  56. Parmesan C, Yohe G (2003) A globally coherent fingerprint of climate change impacts across natural systems. Nature 421:37–42.  https://doi.org/10.1038/nature01286 CrossRefPubMedGoogle Scholar
  57. Pearson RG (2007) Species’s distribution modelling for conservation educators and practitioners. Lesson Conserv 3:54–89Google Scholar
  58. Pearson RG, Dawson TP (2003) Predicting the impacts of climate change on the distribution of species: are bioclimate envelope models useful? Glob Ecol Biogeogr 12:361–371.  https://doi.org/10.1046/j.1466-822X.2003.00042.x CrossRefGoogle Scholar
  59. Phillips SJ, Dudík M, Schapire RE. [Internet] Maxent software for modeling species niches and distributions (Version 3.4.1). http://biodiversityinformatics.amnh.org/open_source/maxent/. Accessed 10 June 2018
  60. Pinto MP, Grelle CEV (2009) Reserve selection and persistence: complementing the existing Atlantic Forest reserve system. Biodivers Conserv 18:957–968.  https://doi.org/10.1007/s10531-008-9513-2 CrossRefGoogle Scholar
  61. Pinto HS, Assad SD, Zullo J Jr., Brunini O (2002) O aquecimento global e a agricultura. Mudanças Climáticas com Ciência 34:1–6Google Scholar
  62. Putzke J (2009) Fungos associados à Araucaria angustifolia. In: Fonseca CR, Souza AF, Leal-Zanchet AM, Dutra TL, Backes A, Ganade G (eds) Floresta com Araucária: ecologia, conservação e desenvolvimento sustentável. Holos, Ribeirão Preto, pp 149–152Google Scholar
  63. Rambo B (1951) A imigração da selva higrófila no Rio Grande do Sul. Anais Botânicos do Herbário Barbosa Rodriguésia 3:55–91Google Scholar
  64. Reflora—Virtual Herbarium. http://reflora.jbrj.gov.br/reflora/herbarioVirtual/. Accessed 20 Feb 2018
  65. Rezende VL, Oliveira-Filho AT, Eisenlohr PV, Kamino LHY, Vibrans AC (2015) Restricted geographic distribution of tree species calls for urgent conservation efforts in the Subtropical Atlantic Forest. Biodivers Conserv 24:1057–1071.  https://doi.org/10.1007/s10531-014-0721-7 CrossRefGoogle Scholar
  66. Rezende CL, Scarano FR, Assad ED, Joly CA, Metzger JP, Strassburg BBN, Tabarelli M, Fonseca GA, Mittermeier RA (2018) From hotspot to hopespot: an opportunity for the Brazilian Atlantic Forest. Perspect Ecol Conser 16:208–214.  https://doi.org/10.1016/j.pecon.2018.10.002 CrossRefGoogle Scholar
  67. Ribeiro MC, Metzger JP, Martensen AC, Ponzoni FJ, Hirota MM (2009) The Brazilian Atlantic Forest: how much is left, and how is the remaining forest distributed? Implications for conservation. Biol Conserv 142:1141–1153.  https://doi.org/10.1016/j.biocon.2009.02.021 CrossRefGoogle Scholar
  68. Rylands AB, Brandon K (2005) Unidades de conservação brasileiras. Megadiversidade 1:27–35Google Scholar
  69. Silva JMC, Casteleti CHM (2003) Status of the biodiversity of the Atlantic Forest of Brazil. In: Galindo-Leal C, Câmara IG (eds) The Atlantic Forest of South America: biodiversity status, threats, and outlook. Center for Applied Biodiversity Science and Island Press, Washington, pp 43–59Google Scholar
  70. Silva LC, Anand M, Oliveira JM, Pillar VD (2009) Past century changes in Araucaria angustifolia (Bertol.) Kuntze water use efficiency and growth in forest and grassland ecosystems of southern Brazil: implications for forest expansion. Glob Change Biol 15:2387–2396.  https://doi.org/10.1111/j.1365-2486.2009.01859.x CrossRefGoogle Scholar
  71. SOS Mata Atlântica (2017) Atlas dos remanescentes florestais da Mata Atlântica: período 2015-2016. Technical report. http://www.sosmatatlantica.org.br/. Accessed 15 June 2017
  72. Souza AF (2007) Ecological interpretation of multiple population size structures in trees: the case of Araucaria angustifolia in South America. Aust Ecol 32:524–533.  https://doi.org/10.1111/j.1442-9993.2007.01724.x CrossRefGoogle Scholar
  73. Souza AF (2017) Conifer demography in forest-grassland mosaics: a landscape-scale study over a 24-year period. Botany 95:717–729.  https://doi.org/10.1139/cjb-2016-0315 CrossRefGoogle Scholar
  74. Souza MIFD, Salgueiro F, Carnavale-Bottino M, Félix DB, Alves-Ferreira M, Bittencourt JVM, Margis R (2009) Patterns of genetic diversity in southern and southeastern Araucaria angustifolia (Bert.) O. Kuntze relict populations. Genet Mol Biol 32:546–556.  https://doi.org/10.1590/S1415-47572009005000052 CrossRefPubMedPubMedCentralGoogle Scholar
  75. Stefenon VM, Gailing O, Finkeldey R (2007) Genetic structure of Araucaria angustifolia (Araucariaceae) populations in Brazil: implications for the in situ conservation of genetic resources. Plant Biol 9:516–525.  https://doi.org/10.1055/s-2007-964974 CrossRefPubMedGoogle Scholar
  76. Thomas P (2013) Araucaria angustifolia. The IUCN Red list of threatened species. Version 2014.2. http://www.iucnredlist.org/. Accessed 16 June 2016
  77. Thuiller W, Lafourcade B, Engler R, Araújo MB (2009) BIOMOD–a platform for ensemble forecasting of species distributions. Ecography 32:369–373.  https://doi.org/10.1111/j.1600-0587.2008.05742.x CrossRefGoogle Scholar
  78. Thuiller W, Georges D, Engler R (2014) biomod2: Ensemble platform for species distribution modeling. R package version 3.1-64. http://CRAN.R-project.org/package=biomod2/. Accessed 10 Feb 2015
  79. Tibbett K (2004) Risk and economic reciprocity: an analysis of three regional Aboriginal food-sharing systems in late Holocene Australia. Aust Archaeol 58:7–10.  https://doi.org/10.1080/03122417.2004.11681774 CrossRefGoogle Scholar
  80. Valverde MC, Marengo JA (2010) Mudanças na circulação atmosférica sobre a América do Sul para cenários futuros de clima projetados pelos modelos globais do IPCC AR4. Rev Bras Meteorol 25:125–145.  https://doi.org/10.1590/S0102-77862010000100011 CrossRefGoogle Scholar
  81. Veloso HP (2012) Manual técnico da vegetação Brasileira, 2nd edn. IBGE, Rio de JaneiroGoogle Scholar
  82. Vieira EM, Lobo G (2009) Dispersão e predação de sementes de Araucaria angustifólia. In: Fonseca CR, Souza AF, Leal-Zanchet AM, Dutra TL, Backes A, Ganade G (eds) Floresta com Araucária: ecologia, conservação e desenvolvimento sustentável. Holos, Ribeirão Preto, pp 85–96Google Scholar
  83. Wilberger TP, Boeni BO, Azambuja CP, Silveira D, Vieira ML, Lehn CR, Dutra TL (2009) Epítificos vasculares associados à Araucaria angustifolia. In: Fonseca CR, Souza AF, Leal-Zanchet AM, Dutra TL, Backes A, Ganade G (eds) Floresta com Araucária: ecologia, conservação e desenvolvimento sustentável. Holos, Ribeirão Preto, pp 137–148Google Scholar
  84. Williams SE, Bolitho EE, Fox S (2003) Climate change in Australian tropical rainforests: an impending environmental catastrophe. Proc R Soc B Biol Sci 270:1887–1892.  https://doi.org/10.1098/rspb.2003.2464 CrossRefGoogle Scholar
  85. Williams JW, Jackson ST, Kutzbacht JE (2007) Projected distributions of novel and disappearing climates by 2100 AD. Proc Natl Acad Sci USA 104:5738–5742.  https://doi.org/10.1073/pnas.0606292104 CrossRefPubMedGoogle Scholar
  86. Williams JN, Seo C, Thorne J, Nelson JK, Erwin S, O’Brien JM, Schwartz MW (2009) Using species distribution models to predict new occurrences for rare plants. Divers Distrib 15:565–576.  https://doi.org/10.1111/j.1472-4642.2009.00567.x CrossRefGoogle Scholar
  87. Wrege MS, Higa RCV, Britez RM, Garrastazu MC, de Sousa VA, Caramori PH, Radin B, Braga HJ (2009) El cambio climático y la conservación de Araucaria angustifolia en Brasil. Unasylva 60:231–232Google Scholar
  88. Wrege MS, Fritzsons E, Soares MTS, Bognola IA, de Sousa VA, de Sousa LP, Gomes JBV, de Aguiar AV, Gomes GC, Matos MFS, Scarante AG, Ferrer RS (2017) Distribuição natural e habitat da araucária frente às mudanças climáticas globais. Pesqui Florest Bras 37:331–346.  https://doi.org/10.4336/2017.pfb.37.91.1413 CrossRefGoogle Scholar
  89. Zhang L, Liu S, Sun P et al (2015) Consensus forecasting of species distributions: the effects of niche model performance and niche properties. PLoS ONE 10:1–18.  https://doi.org/10.1371/journal.pone.0120056 CrossRefGoogle Scholar
  90. Zwiener VP, Lira-Noriega A, Grady CJ, Padial AA, Vitule JRS (2017) Climate change as a driver of biotic homogenization of woody plants in the Atlantic Forest. Glob Ecol Biogeogr 27:298–309.  https://doi.org/10.1111/geb.12695 CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Monik Begname Castro
    • 1
  • Ana Carolina Maioli Campos Barbosa
    • 1
    Email author
  • Patrícia Vieira Pompeu
    • 2
  • Pedro V. Eisenlohr
    • 3
  • Gabriel de Assis Pereira
    • 1
  • Deborah Mattos Guimarães Apgaua
    • 1
    • 4
  • João Carlos Pires-Oliveira
    • 3
  • João Paulo Rodrigues Alves Delfino Barbosa
    • 5
  • Marco Aurélio Leite Fontes
    • 1
  • Rubens Manoel dos Santos
    • 1
  • David Yue Phin Tng
    • 6
  1. 1.Department of Forest SciencesFederal University of LavrasLavrasBrazil
  2. 2.Aquidauana UnitState University of Mato Grosso do SulAquidauanaBrazil
  3. 3.State University of Mato GrossoAlta FlorestaBrazil
  4. 4.Centre for Tropical, Environmental, and Sustainability Sciences, College of Marine and Environmental SciencesJames Cook UniversityCairnsAustralia
  5. 5.Department of BiologyFederal University of LavrasLavrasBrazil
  6. 6.Centre for Rainforest StudiesThe School for Field StudiesYungaburraAustralia

Personalised recommendations