Advertisement

Demographic and dendrochronological evidence reveals highly endangered status of a paleoendemic woody mallow from the Canary Islands

  • Alejandro G. Fernández de CastroEmail author
  • Vicente Rozas
  • Javier Fuertes-Aguilar
  • Juan Carlos Moreno-Saiz
Original Paper

Abstract

Navaea phoenicea (Malvaceae) is a flagship shrub species endemic to Tenerife Island in the Canary archipelago and is included as Endangered on the Spanish Red List. We conducted a comprehensive census and monitored the structure of eight accessible populations over 10 years to develop a stage-based demographic matrix model and performed deterministic and stochastic projections. To determine the longevity of individuals, we conducted a dendrochronological study on ten collected dry samples. The censuses showed a clear, gradual decline, and the total population was around half that in previous studies. The yearly finite growth rate was strongly correlated with annual rainfall. Survival rates of seedlings were low, and high elasticity values were allocated to the larger, reproductive individuals, which showed the highest survival rates. The age of the oldest individual was 32 years, while the average age inferred from dendrochronology was 18 years. These results point to a lower longevity of individuals with respect to the values calculated by demographic models. The findings of this study suggest the importance of the preservation of reproductive individuals and their habitat, as well as the need to re-adopt legal measures of greater protection for the species.

Keywords

Canary Islands Macaronesian bird-flower element Matrix modelling Lavatera Navaea phoenicea Malvaceae Stochastic models 

Notes

Acknowledgements

This research was funded by the CSIC Intramural project 2006-3-OI-028, Spanish Ministry of Science and Innovation research project CGL2007-66516 to JFA and a personal grant FPI 0266/2005 from Madrid Regional Government (European Social Fund) to AGFdC. We thank Mar Génova, for her help in the dendrochronological field work. We also thank Cabildo de Tenerife and Gobierno de Canarias for permissions for sampling and prospection. The Agencia Estatal de Meteorología (AEMET) kindly provided meteorological data. The authors are grateful to Txema Iriondo for his comments on this paper.

Supplementary material

10531_2019_1894_MOESM1_ESM.pdf (189 kb)
Supplementary material 1 Relationships between diameter at the stem height and a)number of flowers and b) logarithm of biovolume. (PDF 188 kb)
10531_2019_1894_MOESM2_ESM.pdf (646 kb)
Supplementary material 2 a) Quasi-extinction probabilities for a 100 year period performed for Anaga and Teno populations separately and the population ensemble. The probabilities predicted by the stochastic model for the three scenarios (negative, stable and positive) are plotted against time. b) Density of frequency of population numbers at year 100 predicted by the model for the three scenarios. (PDF 645 kb)
10531_2019_1894_MOESM3_ESM.xlsx (19 kb)
Supplementary material 3 (XLSX 18 kb)
10531_2019_1894_MOESM4_ESM.xlsx (12 kb)
Supplementary material 4 (XLSX 12 kb)

References

  1. Anderson GJ, Bernardello G, Santos-Guerra A (2015) Reproductive biology of Solanum vespertilio (Solanaceae), a zygomorphic, heterantherous, enantiostylous, and andromonoecious rare Canary Islands endemic. Plant Syst Evol 301:1191–1206.  https://doi.org/10.1007/s00606-014-1143-4 CrossRefGoogle Scholar
  2. Bañares-Baudet Á, Blanca G, Güemes J et al (2004) Atlas y Libro Rojo de la Flora Vascular Amenazada de España. Dirección General de Conservación de la Naturaleza, MadridGoogle Scholar
  3. Bunn AG (2008) A dendrochronology program library in R (dplR). Dendrochronologia 26:115–124.  https://doi.org/10.1016/j.dendro.2008.01.002 CrossRefGoogle Scholar
  4. Carlquist S (1974) Insular woodiness. Island Biology. Columbia University Press, New York, pp 350–428Google Scholar
  5. Caswell H (2001) Matrix population models: construction, analysis and interpretation, 2nd edn. Sinauer, SunderlandGoogle Scholar
  6. Caujapé-Castells J, Tye A, Crawford DJ et al (2010) Conservation of oceanic island floras: present and future global challenges. Perspect Plant Ecol Evol Syst 12:107–129.  https://doi.org/10.1016/j.ppees.2009.10.001 CrossRefGoogle Scholar
  7. Courchamp F, Hoffmann BD, Russell JC et al (2014) Climate change, sea-level rise, and conservation: keeping island biodiversity afloat. Trends Ecol Evol 29:127–130.  https://doi.org/10.1016/j.tree.2014.01.001 CrossRefPubMedGoogle Scholar
  8. Cropper TE, Hanna E (2014) An analysis of the climate of Macaronesia, 1865-2012. Int J Climatol 34:604–622.  https://doi.org/10.1002/joc.3710 CrossRefGoogle Scholar
  9. De Nascimento L, Willis KJ, Fernández-Palacios JM et al (2009) The long-term ecology of the lost forests of la Laguna, Tenerife (Canary Islands). J Biogeogr 36:499–514.  https://doi.org/10.1111/j.1365-2699.2008.02012.x CrossRefGoogle Scholar
  10. del Arco Aguilar MJ, Rodríguez Delgado O (2018) Vegetation of the Canary Islands. Plant and vegetation, vol 16. Springer, Cham.  https://doi.org/10.1007/978-3-319-77255-4 CrossRefGoogle Scholar
  11. del Arco Aguilar MJ, González-González R, Garzón-Machado V, Pizarro-Hernández B (2010) Actual and potential natural vegetation on the Canary Islands and its conservation status. Biodivers Conserv 19:3089–3140.  https://doi.org/10.1007/s10531-010-9881-2 CrossRefGoogle Scholar
  12. Escobar García P, Schönswetter P, Fuertes Aguilar J et al (2009) Five molecular markers reveal extensive morphological homoplasy and reticulate evolution in the Malva alliance (Malvaceae). Mol Phylogenet Evol 50:226–239.  https://doi.org/10.1016/j.ympev.2008.10.015 CrossRefPubMedGoogle Scholar
  13. Fernandes JP, Guiomar N, Gil A (2015) Strategies for conservation planning and management of terrestrial ecosystems in small islands (exemplified for the Macaronesian Islands). Environ Sci Policy 51:1–22.  https://doi.org/10.1016/j.envsci.2015.03.006 CrossRefGoogle Scholar
  14. Fernández de Castro AG, Moreno-Saiz JC, Fuertes-Aguilar J (2017) Ornithophily for the nonspecialist: differential pollination efficiency of the macaronesian island paleoendemic Navaea phoenicea (Malvaceae) by generalist passerines. Am J Bot 104:1556–1568.  https://doi.org/10.3732/ajb.1700204 CrossRefPubMedGoogle Scholar
  15. Fernández-Lugo S, de Nascimento L, Méndez J et al (2015) Seedling survival patterns in Macaronesian laurel forest: a long-term study in Tenerife (Canary Islands). Forestry 88:121–130.  https://doi.org/10.1093/forestry/cpu035 CrossRefGoogle Scholar
  16. Fernández-Palacios JM, De Nascimento L, Otto R et al (2011) A reconstruction of Palaeo-Macaronesia, with particular reference to the long-term biogeography of the Atlantic island laurel forests. J Biogeogr 38:226–246.  https://doi.org/10.1111/j.1365-2699.2010.02427.x CrossRefGoogle Scholar
  17. Gangoso L, Donazar JA, Scholz S et al (2006) Contradiction in conservation of island ecosystems: plants, introduced herbivores and avian scavengers in the Canary Islands. Biodivers Conserv 15:2231–2248.  https://doi.org/10.1007/s10531-004-7181-4 CrossRefGoogle Scholar
  18. Iriondo JM, Albert MJ, Giménez-Benavides L, et al. (2009) Poblaciones en peligro: Viabilidad demográfica de la Flora Vascular Amenazada de España, 1st ed. Dirección General de Medio Natural y Política Forestal (Ministerio de Medio Ambiente, y Medio Rural y Marino), MadridGoogle Scholar
  19. Gobierno de Canarias (2010) Catálogo Canario de especies protegidas. 167:16Google Scholar
  20. Gómez Campo, C. (Ed.) 1996. Libro Rojo de Especies Vegetales Amenazadas de las Islas Canarias. Gobierno de Canarias, TenerifeGoogle Scholar
  21. Harter DEV, Irl SDH, Seo B et al (2015) Impacts of global climate change on the floras of oceanic islands—projections, implications and current knowledge. Perspect Plant Ecol Evol Syst 17:160–183.  https://doi.org/10.1016/j.ppees.2015.01.003 CrossRefGoogle Scholar
  22. IPCC Working Group I (2013) IPCC fifth assessment report (AR5)—the physical science basis. Cambridge University Press, Cambridge, p 1535Google Scholar
  23. Irl SDH, Harter DEV, Steinbauer MJ et al (2015) Climate vs. topography—spatial patterns of plant species diversity and endemism on a high-elevation island. J Ecol 103:1621–1633.  https://doi.org/10.1111/1365-2745.12463 CrossRefGoogle Scholar
  24. Kier G, Kreft H, Lee TM et al (2009) A global assessment of endemism and species richness across island and mainland regions. Proc Natl Acad Sci USA 106:9322–9327.  https://doi.org/10.1073/pnas.0810306106 CrossRefPubMedGoogle Scholar
  25. Kyncl T, Suda J, Wild J et al (2006) Population dynamics and clonal growth of Spartocytisus supranubius (Fabaceae), a dominant shrub in the alpine zone of Tenerife, Canary Islands. Plant Ecol 186:97–108.  https://doi.org/10.1007/s11258-006-9115-6 CrossRefGoogle Scholar
  26. Lens F, Davin N, Erik Smets, del Arco M (2013) Insular woodiness on the Canary Islands: a remarkable case of convergent evolution. Int J Plant Sci 174:992–1013CrossRefGoogle Scholar
  27. Marrero-Gómez MV, Bañares-Baudet Á, Carqué-Álamo E (2005) Viabilidad de las poblaciones del endemismo tinerfeño Echium auberianum (Boraginaceae). Vieraea 33:93–104Google Scholar
  28. Marrero-Gómez MV, Oostermeijer JGB, Carqué-Álamo E, Bañares-Baudet Á (2007) Population viability of the narrow endemic Helianthemum juliae (Cistaceae) in relation to climate variability. Biol Conserv 136:552–562.  https://doi.org/10.1016/j.biocon.2007.01.010 CrossRefGoogle Scholar
  29. Marrero-Gómez MV, Bañares-Baudet Á, Carqué-Álamo E (2015) Seguimiento de la flora vascular de España. Bencomia de cumbre (Bencomia exstipulata). Amagante de roques (Cistus chinamadensis). Borriza del Teide (Laphangium teydeum). Saúco canario (Sambucus nigra ssp. palmensis). Canutillo del Teide (Silene nocteole). Dirección General de Calidad y Evaluación Ambiental y Medio Natural, Ministerio de Agricultura, Alimentación y Medio Ambiente., MadridGoogle Scholar
  30. Médail F, Quézel P (1999) Biodiversity hotspots in the Mediterranean Basin: setting global conservation priorities. Conserv Biol 13:1510–1513CrossRefGoogle Scholar
  31. Milligan BG, Stubben CJ (2007) Estimating and analyzing demographic models using the popbio package in R. J Stat Softw 22(11):1–23Google Scholar
  32. Moreno-Saiz JC (2008) Lista Roja de Flora Vascular Española. Dirección General de Medio Natural y Política Forestal (Ministerio de Medio Ambiente, y Medio Rural y Marino, y Sociedad Española de Biología de la Conservación de Plantas), MadridGoogle Scholar
  33. Moreno-Saiz JC, Domínguez Lozano F, Marrero-Gómez MV, Bañares-Baudet Á (2015) Application of the Red List Index for conservation assessment of Spanish vascular plants. Conserv Biol 29:910–919.  https://doi.org/10.1111/cobi.12437 CrossRefGoogle Scholar
  34. Morris WF, Doak DF (2002) Quantitative conservation biology: theory and practice of population viability analysis. Sinauer Associates, SunderlandGoogle Scholar
  35. Muñoz-Rodríguez P, Munt DD, Saiz JCM (2016) Global strategy for plant conservation: inadequate in situ conservation of threatened flora in Spain. Isr J Plant Sci 63:297–308.  https://doi.org/10.1080/07929978.2016.1257105 CrossRefGoogle Scholar
  36. Niang I, Ruppel OC, Abdrabo MA, et al. (2014) Africa. In: Barros VR, Field CB, Dokken DJ, et al. (eds) Clim. Chang. 2014 Impacts, Adapt. Vulnerability. Part B Reg. Asp. Contrib. Work. Gr. II to Fifth Assess. Rep. Intergov. Panel Clim. Chang. Cambridge University Press, Cambridge, pp 1199–1265Google Scholar
  37. Oostermeijer JGB, Vantveer R, Dennijs JCM et al (1994) Population-structure of the rare, long-lived perennial Gentiana pneumonanthe in relation to vegetation and management in the Netherlands. J Appl Ecol 31:428–438CrossRefGoogle Scholar
  38. Pianka ER (2011) Evolutionary Ecology eBook, 7th edition. Google BooksGoogle Scholar
  39. Pierson EA, Turner RM (1998) An 85-year study of saguaro (Carnegiea gigantea) demography. Ecology 79:2676–2693.  https://doi.org/10.1890/0012-9658(1998)079%5b2676:aysosc%5d2.0.co;2 CrossRefGoogle Scholar
  40. R Core Team (2013) R: a language and environment for statistical computing. Version 3.1.2. R Core Team, ViennaGoogle Scholar
  41. Reyes-Betancort JA, Santos Guerra A, Guma IR et al (2008) Diversity, rarity and the evolution and conservation of the Canary Islands endemic flora. An Jard Bot Madrid 65:25–45.  https://doi.org/10.3989/ajbm.2008.v65.i1.244 CrossRefGoogle Scholar
  42. Ribeiro PJ, Diggle PJ (2015) geoR: Analysis of Geostatistical DataGoogle Scholar
  43. Rodríguez Núñez S, Acevedo Rodríguez A, Oval de la Rosa JP et al (2004) Lavatera phoenicea Vent. In: Bañares-Baudet Á, Blanca G, Güemes J et al (eds) Atlas y Libro. Rojo la Flora Vascular Amenazada de España. Dirección General de Conservación de la Naturaleza, Madrid, p 895Google Scholar
  44. Rozas V, García-González I, Pérez-De-Lis G, Arévalo JR (2013) Local and large-scale climatic factors controlling tree-ring growth of Pinus canariensis on an oceanic island. Clim Res 56:197–207.  https://doi.org/10.3354/cr01158 CrossRefGoogle Scholar
  45. Salguero-Gómez R, Jones OR, Archer CR et al (2015) The compadre Plant Matrix Database: an open online repository for plant demography. J Ecol 103:202–218.  https://doi.org/10.1111/1365-2745.12334 CrossRefGoogle Scholar
  46. Sosa PA, González-González EA, González-Pérez MA et al (2014) Reproductive strategy and ploidy determine the genetic variability of Sorbus aria. Tree Genet Genomes 10:679–688.  https://doi.org/10.1007/s11295-014-0713-5 CrossRefGoogle Scholar
  47. Sperling FN, Washington R, Whittaker RJ (2004) Future climate change of the subtropical North Atlantic: implications for the cloud forests of tenerife. Clim Change 65:103–123.  https://doi.org/10.1023/B:CLIM.0000037488.33377.bf CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Departamento de Biodiversidad y ConservaciónReal Jardín Botánico-CSICMadridSpain
  2. 2.iuFOR-EiFAB, Campus Duques de SoriaUniversidad de ValladolidSoriaSpain
  3. 3.Departamento de Biología (Botánica)Universidad Autónoma de MadridMadridSpain
  4. 4.Centro de Investigación en Biodiversidad y Cambio Global (CIBC-UAM)Universidad Autónoma de MadridMadridSpain
  5. 5.Laboratorio de Dendrocronología y Cambio Global, Facultad de Ciencias Forestales y Recursos NaturalesUniversidad Austral de ChileValdiviaChile

Personalised recommendations