Advertisement

DNA-based species identification of shark finning seizures in Southwest Atlantic: implications for wildlife trade surveillance and law enforcement

  • Bruno Lopes da Silva Ferrette
  • Rodrigo Rodrigues DominguesEmail author
  • Luis Henrique Fregadolli Ussami
  • Letícia Moraes
  • Carolina de Oliveira Magalhães
  • Alberto Ferreira de Amorim
  • Alexandre Wagner Silva Hilsdorf
  • Claudio Oliveira
  • Fausto Foresti
  • Fernando Fernandes Mendonça
Original Paper
Part of the following topical collections:
  1. Biodiversity exploitation and use

Abstract

Sharks developed life history traits that make them susceptible to overfishing. This is, in turn, a risk for extinction, and several species are affected. The high price of shark fins in the international trade has triggered the widespread capture of sharks at unsustainable levels, prompting illegal and unethical practices, such as finning. To address these concerns, the present study aimed to identify species composition using molecular techniques based on DNA barcoding and DNA polymorphism on samples taken from illegal shark fin seizures conducted by the Federal Environmental Agency of Brazil. A species-specific DNA-based identification from three finning seizures in Brazil found at least 20 species from 747 shark fins, some of which were identified as endangered and protected under Brazilian legislation, while others were representative of restricted catches, according to Appendix II of CITES. In the seizure from Belém, 338 fins were identified as belonging to at least 19 different species, while in the seizure from Natal 211, fins belonging to at least 8 different species were identified. Furthermore, 198 fins from Cananéia were identified through PCR-Multiplex as belonging to Isurus oxyrinchus. These results raise concerns about the environmental and socioeconomic effects of finning on developing countries. Furthermore, this study represents the first finning evaluation from Brazil in the Southwest Atlantic, highlighting the importance of developing policies aimed toward restricting and regulating the shark trade and detecting IUU fisheries and illegal trade of endangered species, mainly in developing countries, where fisheries management, surveillance, and species-specific fisheries catch data are often sporatic.

Keywords

Genetic identification Elasmobranchs DNA barcoding Fisheries management Threatened species Conservation 

Notes

Acknowledgements

Funding was provided by the São Paulo Research Foundation (FAPESP) (Grant Numbers 2009/54660-6; 2011/23787-0; 2017/02420-8).

Supplementary material

10531_2019_1862_MOESM1_ESM.docx (32 kb)
Supplementary material 1 (DOCX 38 kb)

References

  1. Almerón-Souza F, Sperb C, Castilho CL, Figueiredo PI, Gonçalves LT, Machado R, Oliveira LR, Valiati VH, Fagundes NJ (2018) Molecular identification of shark meat from local markets in southern brazil based on DNA barcoding: evidence for mislabeling and trade of endangered species. Front Genet 9:138.  https://doi.org/10.3389/fgene201800138 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410.  https://doi.org/10.1016/S0022-2836(05)80360-2 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Amorim AF, Arfelli CA, Fagundes L (1998) Pelagic elasmobranchs caught by longliners off southern Brazil during 1974–97: an overview. Mar Freshw Res 49(7):621–632.  https://doi.org/10.1071/MF97111 CrossRefGoogle Scholar
  4. Arancibia H, Neira S (2005) Long-term changes in the mean trophic level of Central Chile fishery landings. Sci Mar 69(2):295–300.  https://doi.org/10.3989/scimar.2005.69n2295 CrossRefGoogle Scholar
  5. Baeta F, Costa MJ, Cabral H (2009) Changes in the trophic level of Portuguese landings and fish market price variation in the last decades. Fish Res 97(3):216–222.  https://doi.org/10.1016/j.fishres.2009.02.006 CrossRefGoogle Scholar
  6. Barbuto M, Galimberti A, Ferri E, Labra M, Malandra R, Galli P, Casiraghi M (2010) DNA barcoding reveals fraudulent substitutions in shark seafood products: the Italian case of “palombo” (Mustelus spp.). Food Res Int 43(1):376–381.  https://doi.org/10.1016/j.foodres.2009.10.009 CrossRefGoogle Scholar
  7. Barreto R, Ferretti F, Flemming JM, Amorim A, Andrade H, Worm B, Lessa R (2016) Trends in the exploitation of South Atlantic shark populations. Conserv Biol 30:792–804.  https://doi.org/10.1111/cobi12663 CrossRefPubMedGoogle Scholar
  8. Barreto RR, Bornatowski H, Motta FS, Santander-Neto J, Vianna GMS, Lessa R (2017) Rethinking use and trade of pelagic sharks from Brazil. Mar Policy 85:114–122.  https://doi.org/10.1016/j.marpol.2017.08.016 CrossRefGoogle Scholar
  9. Benson DA, Cavanaugh M, Clark K, Karsch-Mizrachi I, Lipman DJ, Ostell J, Sayers EW (2017) GenBank. Nucleic Acids Res 46:D41–D47.  https://doi.org/10.1093/nar/gkx1094 CrossRefPubMedCentralGoogle Scholar
  10. Bland LM, Collen BEN, Orme CDL, Bielby JON (2015) Predicting the conservation status of data-deficient species. Conserv Biol 29:250–259.  https://doi.org/10.1111/cobi12372 CrossRefPubMedGoogle Scholar
  11. Bonfil R (1994) Overview of world elasmobranch fisheries. Food and Agriculture Organization of the United Nations, RomeGoogle Scholar
  12. Bornatowski H, Angelini R, Coll M, Barreto RR, Amorim AF (2018) Ecological role and historical trends of large pelagic predators in a subtropical marine ecosystem of the South Atlantic. Rev Fish Biol Fish 28(1):241–259.  https://doi.org/10.1007/s11160-017-9492-z CrossRefGoogle Scholar
  13. Bradley D, Gaines SD (2014) Extinction risk: counting the cost of overfishing on sharks and rays. eLife 3:e02199.  https://doi.org/10.7554/eLife02199 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Bunholi IV, Ferrette BLS, De Biasi JB, Magalhães CO, Rotundo MM, Oliveira C, Foresti F, Mendonça FF (2018) The fishing and illegal trade of the angelshark: dNA barcoding against misleading identifications. Fish Res 206:193–197.  https://doi.org/10.1016/jfishres201805018 CrossRefGoogle Scholar
  15. Butchart SH, Bird JP (2010) Data deficient birds on the IUCN Red List: what don’t we know and why does it matter? Biol Conserv 143:239–247.  https://doi.org/10.1016/jbiocon200910008 CrossRefGoogle Scholar
  16. Camhi MD, Fordham SV, Fowler SL (2008) Domestic and international management for pelagic sharks. Sharks of the open ocean. Blackwell, Oxford, pp 418–444CrossRefGoogle Scholar
  17. Cardeñosa D, Fields AT, Babcock EA, Zhang H, Feldheim K, Shea SK, Fischer GA, Chapman DD (2018) CITES-listed sharks remain among the top species in the contemporary fin trade. Conserv Lett 11:e12457.  https://doi.org/10.1111/conl12457 CrossRefGoogle Scholar
  18. Cardeñosa D, Shea KH, Zhang H, Feldheim K, Fischer GA, Chapman DD (2019) Small fins, large trade: a snapshot of the species composition of low-value shark fins in the Hong Kong markets. Anim Conserv.  https://doi.org/10.1111/acv.12529 CrossRefGoogle Scholar
  19. Cerutti-Pereyra F, Meekan MG, Wei NWV, O’Shea O, Bradshaw CJ, Austin CM (2012) Identification of rays through DNA barcoding: an application for ecologists. PLoS ONE 7(6):e36479.  https://doi.org/10.1371/journal.pone.0036479 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Chapman DD, Pinhal D, Shivji MS (2009) Tracking the fin trade: genetic stock identification in western Atlantic scalloped hammerhead sharks Sphyrna lewini. Endanger Species Res 9:221–228.  https://doi.org/10.3354/esr00241 CrossRefGoogle Scholar
  21. CITES (2018) CITES trade statistics derived from the CITES Trade Database. UNEP World Conservation Monitoring Centre, Cambridge. https://trade.cites.org/. Accessed 14 Dec 2018
  22. CITES-CoP18 (2019) Eighteenth meeting of the conference of the parties of the convention on international trade in endangered species of Wild Fauna and Flora. https://citessharks.org/. Accessed 30 Aug 2019
  23. Clarke S (2004) Shark product trade in Hong Kong and mainland China and implementation of the CITES shark listings. TRAFFIC East Asia, Hong Kong, China.Google Scholar
  24. Clarke S (2008) Use of shark fin trade data to estimate historic total shark removals in the Atlantic Ocean. Aquat Living Resour 21(4):373–381.  https://doi.org/10.1051/alr:2008060 CrossRefGoogle Scholar
  25. Clarke SC, Magnussen JE, Abercrombie DL, McAllister MK, Shivji MS (2006a) Identification of shark species composition and proportion in the Hong Kong shark fin market based on molecular genetics and trade records. Conserv Biol 20:201–211.  https://doi.org/10.1111/j1523-1739200500247x CrossRefPubMedGoogle Scholar
  26. Clarke SC, McAllister MK, Milner-Gulland EJ, Kirkwood GP, Michielsens CG, Agnew DJ, Pikitch EK, Nakano H, Shivji MS (2006b) Global estimates of shark catches using trade records from commercial markets. Ecol Lett 9:1115–1126.  https://doi.org/10.1111/j1461-0248200600968x CrossRefPubMedGoogle Scholar
  27. Clarke S, Milner-Gulland EJ, Bjørndal T (2007) Social, economic, and regulatory drivers of the shark fin trade. Mar Res Econ 22(3):305–327CrossRefGoogle Scholar
  28. Cochrane KL, Doulman DJ (2005) The rising tide of fisheries instruments and the struggle to keep afloat. Philos Trans R Soc B 360(1453):77–94.  https://doi.org/10.1098/rstb.2004.1568 CrossRefGoogle Scholar
  29. Coelho R, Mejuto J, Domingo A, Yokawa K, Liu KM, Cortés E, Romanov EV, Silva C, Hazin FHV, Arocha F, Mwilima AM (2018) Distribution patterns and population structure of the blue shark (Prionace glauca) in the Atlantic and Indian Oceans. Fish Fish 19:90–106.  https://doi.org/10.1111/faf12238 CrossRefGoogle Scholar
  30. Corrigan S, Delser PM, Eddy C, Duffy C, Yang L, Li C, Bazinet AL, Mona S, Naylor GJ (2017) Historical introgression drives pervasive mitochondrial admixture between two species of pelagic sharks. Mol Phylogenet Evol 110:122–126.  https://doi.org/10.1016/jympev201703011 CrossRefPubMedGoogle Scholar
  31. Cortés E, Arocha F, Beerkircher L, Carvalho F, Domingo A, Heupel M, Holtzhausen H, Santos MN, Ribera M, Simpfendorfer C (2010) Ecological risk assessment of pelagic sharks caught in Atlantic pelagic longline fisheries. Aquat Living Resour 23:25–34.  https://doi.org/10.1051/alr/2009044 CrossRefGoogle Scholar
  32. Cortés E, Domingo A, Miller P, Forselledo R, Mas F, Arocha F, Campana S, Coelho R, Da Silva C, Hazin FHV, Holtzhausen H (2015) Expanded ecological risk assessment of pelagic sharks caught in Atlantic pelagic longline fisheries. Collect Vol Sci Pap ICCAT 71:2637–2688Google Scholar
  33. Darriba D, Taboada GL, Doallo R, Posada D (2012) jModelTest 2: more models, new heuristics and parallel computing. Nat Methods 9:772.  https://doi.org/10.1038/nmeth2109 CrossRefPubMedPubMedCentralGoogle Scholar
  34. Davidson LN, Krawchuk MA, Dulvy NK (2016) Why have global shark and ray landings declined: improved management or overfishing? Fish Fish 17:438–458.  https://doi.org/10.1111/faf12119 CrossRefGoogle Scholar
  35. de Bruyn P (2017) Report of the 2017 ICCAT Shortfin mako assessment meeting. International Commission for the Conservation of Atlantic Tunas, MadridGoogle Scholar
  36. de Mitcheson YS, Andersson AA, Hofford A, Law CS, Hau LC, Pauly D (2018) Out of control means off the menu: the case for ceasing consumption of luxury products from highly vulnerable species when international trade cannot be adequately controlled; shark fin as a case study. Mar Policy 98:115–120CrossRefGoogle Scholar
  37. De-Franco B, Mendonça FF, Oliveira C, Foresti F (2012) Illegal trade of the guitarfish Rhinobatos horkelii on the coasts of central and southern Brazil: genetic identification to aid conservation. Aquat Conserv 22:272–276.  https://doi.org/10.1002/aqc2229 CrossRefGoogle Scholar
  38. Di Dario F, Alves CB, Boos H, Frédou FL, Lessa RP, Mincarone MM, Pinheiro MA, Polaz CN, Reis RE, Rocha LA, Santana FM (2015) A better way forward for Brazil’s fisheries. Science 347(6226):1079.  https://doi.org/10.1126/science.347.6226.1079-a CrossRefPubMedGoogle Scholar
  39. Domingues RR, Amorim AF, Hilsdorf AWS (2013) Genetic identification of Carcharhinus sharks from the southwest Atlantic ocean (Chondrichthyes: Carcharhiniformes). J Appl Ichthyol 29:738–742.  https://doi.org/10.1111/jai12154 CrossRefGoogle Scholar
  40. Drummond AJ, Ho SY, Phillips MJ, Rambaut A (2006) Relaxed phylogenetics and dating with confidence. PLoS Biol 4:e88.  https://doi.org/10.1371/journalpbio0040088 CrossRefPubMedPubMedCentralGoogle Scholar
  41. Dulvy NK, Fowler SL, Musick JA, Cavanagh RD, Kyne PM, Harrison LR, Carlson JK, Davidson LN, Fordham SV, Francis MP, Pollock CM (2014) Extinction risk and conservation of the world’s sharks and rays. eLife 3:e00590.  https://doi.org/10.7554/eLife00590 CrossRefPubMedPubMedCentralGoogle Scholar
  42. Dulvy NK, Simpfendorfer CA, Davidson LN, Fordham SV, Bräutigam A, Sant G, Welch DJ (2017) Challenges and priorities in shark and ray conservation. Curr Biol 27:R565–R572.  https://doi.org/10.1016/jcub201704038 CrossRefPubMedGoogle Scholar
  43. Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797.  https://doi.org/10.1093/nar/gkh340 CrossRefPubMedPubMedCentralGoogle Scholar
  44. Fabinyi M, Pido M, Harani B, Caceres J, Uyami-Bitara A, De las Alas A, Buenconsejo J, Ponce de Leon EM (2012) Luxury seafood consumption in China and the intensification of coastal livelihoods in Southeast Asia: the live reef fish for food trade in Balabac, Philippines. Asia Pac Viewp 53:118–132.  https://doi.org/10.1111/j1467-8373201201483x CrossRefGoogle Scholar
  45. FAO (2018) FishStatJ—software for fishery statistical time series. FAO Fisheries and Aquaculture Department, Rome. http://www.fao.org/fishery/. Accessed 16 Sept 2018
  46. FAO (2019) Fisheries and Aquaculture Department. Capture fisheries. FAO Fisheries and Aquaculture Department, Rome. http://www.fao.org/fishery/. Assessed 12 Aug 2019
  47. Feitosa LM, Martins APB, Giarrizzo T, Macedo W, Monteiro IL, Gemaque R, Nunes JLS, Gomes F, Schneider H, Sampaio I, Souza R (2018) DNA-based identification reveals illegal trade of threatened shark species in a global elasmobranch conservation hotspot. Sci Rep 8:3347.  https://doi.org/10.1038/s41598-018-21683-5 CrossRefPubMedPubMedCentralGoogle Scholar
  48. Ferrette BLS, Domingues RR, Rotundo MM, Miranda MP, Bunholi IV, De Biasi JB, Oliveira C, Foresti F, Mendonça FF (2019) DNA barcode reveals the bycatch of endangered batoids species in the southwest atlantic: implications for sustainable fisheries management and conservation Efforts. Genes 10(4):304.  https://doi.org/10.3390/genes10040304 CrossRefPubMedCentralGoogle Scholar
  49. Ferretti F, Worm B, Britten GL, Heithaus MR, Lotze HK (2010) Patterns and ecosystem consequences of shark declines in the ocean. Ecol Lett 13:1055–1071.  https://doi.org/10.1111/j1461-0248201001489x CrossRefPubMedGoogle Scholar
  50. Fiedler FN, Port D, Giffoni BB, Sales G, Fisch F (2017) Pelagic longline fisheries in southeastern/south Brazil. Who cares about the law? Mar Policy 77:56–64.  https://doi.org/10.1016/j.marpol.2016.12.011 CrossRefGoogle Scholar
  51. Fields AT, Abercrombie DL, Eng R, Feldheim K, Chapman DD (2015) A novel mini-DNA barcoding assay to identify processed fins from internationally protected shark species. PLoS ONE 10(2):e0114844.  https://doi.org/10.1371/journal.pone.0114844 CrossRefPubMedPubMedCentralGoogle Scholar
  52. Fields AT, Fischer GA, Shea SK, Zhang H, Abercrombie DL, Feldheim KA, Babcock EA, Chapman DD (2018) Species composition of the international shark fin trade assessed through a retail-market survey in Hong Kong. Conserv Biol 32:376–389.  https://doi.org/10.1111/cobi13043 CrossRefPubMedGoogle Scholar
  53. Freire KMF, Pauly D (2010) Fishing down Brazilian marine food webs, with emphasis on the east Brazil large marine ecosystem. Fish Res 105(1):57–62.  https://doi.org/10.1016/j.fishres.2010.02.008 CrossRefGoogle Scholar
  54. Freire KMF, Aragão JAN, Araújo ARR, Ávila-da-Silva AO, Bispo MCS, Canziani GV, Carneiro MH, Carneiro MH, Gonçalves FDS, Keunecke KA, Mendonça JT, Divovich E (2015) Reconstruction of catch statistics for Brazilian marine waters (1950-2010). In: Freire KMF, Pauly D (eds) Fisheries catch reconstructions for Brazil’s mainland and oceanic islands. Fisheries centre research reports, vol 23. Fisheries Centre. University of British Columbia, Vancouver, pp 3–30Google Scholar
  55. Fromentin JM, Bonhommeau S, Arrizabalaga H, Kell LT (2014) The spectre of uncertainty in management of exploited fish stocks: the illustrative case of Atlantic bluefin tuna. Mar Policy 47:8–14.  https://doi.org/10.1016/j.marpol.2014.01.018 CrossRefGoogle Scholar
  56. García VB, Lucifora LO, Myers RA (2008) The importance of habitat and life history to extinction risk in sharks, skates, rays and chimaeras. Proc R Soc Lond B 275:83–89.  https://doi.org/10.1098/rspb20071295 CrossRefGoogle Scholar
  57. Gascuel O (1997) BIONJ: an improved version of the NJ algorithm based on a simple model of sequence data. Mol Biol Evol 14:685–695.  https://doi.org/10.1093/oxfordjournalsmolbeva025808 CrossRefPubMedGoogle Scholar
  58. Gernhard T (2008) The conditioned reconstructed process. J Theor Biol 253:769–778.  https://doi.org/10.1016/jjtbi200804005 CrossRefPubMedGoogle Scholar
  59. Griffith DR (2008) The ecological implications of individual fishing quotas and harvest cooperatives. Front Ecol Environ 6(4):191–198.  https://doi.org/10.1890/050060 CrossRefGoogle Scholar
  60. Guindon S, Gascuel O (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52:696–704.  https://doi.org/10.1080/10635150390235520 CrossRefPubMedPubMedCentralGoogle Scholar
  61. Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O (2010) New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 59:307–321.  https://doi.org/10.1093/sysbio/syq010 CrossRefPubMedGoogle Scholar
  62. Hazin FH, Broadhurst MK, Amorim AF, Arfelli CA, Domingo A (2008) Catches of pelagic sharks by subsurface longline fisheries in the South Atlantic Ocean during the last century: a review of available data with an emphasis on Uruguay and Brazil. Sharks Open Ocean Biol Fish Conserv.  https://doi.org/10.1002/9781444302516 CrossRefGoogle Scholar
  63. Hebert PD, Cywinska A, Ball SL, Dewaard JR (2003) Biological identifications through DNA barcodes. Proc R Soc Lond B 270(1512):313–321.  https://doi.org/10.1098/rspb.2002.2218 CrossRefGoogle Scholar
  64. Heithaus MR, Wirsing AJ, Dill LM (2012) The ecological importance of intact top-predator populations: a synthesis of 15 years of research in a seagrass ecosystem. Mar Freshw Res 63:1039–1050.  https://doi.org/10.1071/MF12024 CrossRefGoogle Scholar
  65. Hoffmann M, Hilton-Taylor C, Angulo A, Böhm M, Brooks TM, Butchart SH, Carpenter KE, Carpenter KE, Chanson J, Collen B, Cox NA, Darwall WR (2010) The impact of conservation on the status of the world’s vertebrates. Science 330:1503–1509.  https://doi.org/10.1126/science1194442 CrossRefPubMedGoogle Scholar
  66. Holmes BH, Steinke D, Ward RD (2009) Identification of shark and ray fins using DNA barcoding. Fish Res 95(2–3):280–288.  https://doi.org/10.1016/j.fishres.2008.09.036 CrossRefGoogle Scholar
  67. ICCAT (2011) Recommendation by ICCAT on the conservation of silky sharks caught in association with ICCAT fisheries, 11-08 BYC. International Commission for the Conservation of Atlantic Tunas, Spain. https://www.iccat.int/Documents/Recs/compendiopdf-e/2011-08-e.pdf. Accessed 11 Dec 2018
  68. ICCAT (2015) Report of the 2015 ICCAT blue shark stock assessment session ICCAT Collect Vol Sci Pap 72:866–1019. https://www.iccat.int/Documents/SCRS/DetRep/BSH_ASS_ENG.pdf. Accessed 9 Dec 2018
  69. IOTC (2017) Status summary for species of tuna and tuna-like species under the IOTC mandate, as well as other species impacted by the IOTC fisheries Stock Status Dashboard. http://www.iotc.org/science/status-summary-species-tuna-and-tuna-species-under-iotc-mandate-well-other-species-impacted-iotc. Accessed 12 Dec 2018
  70. ISC (2017) Stock assessment and future projections of blue shark in the north pacific ocean. WCPFC-SC13-2017/SA-WP-10 WCPFC-SC, Rarotonga, Cook Islands, 9–17. https://www.wcpfc.int/node/19204. Accessed 10 Dec 2018
  71. Jaiteh VF, Hordyk AR, Braccini M, Warren C, Loneragan NR, Thurstan R (2016) Shark finning in eastern Indonesia: assessing the sustainability of a data-poor fishery. ICES J Mar Sci 74:242–253.  https://doi.org/10.1093/icesjms/fsw170 CrossRefGoogle Scholar
  72. Jaiteh VF, Loneragan NR, Warren C (2017) The end of shark finning? Impacts of declining catches and fin demand on coastal community livelihoods. Mar Policy 82:224–233.  https://doi.org/10.1016/jmarpol201703027 CrossRefGoogle Scholar
  73. Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, Buxton S, Buxton S, Cooper A, Markowitz S, Duran C, Thierer T (2012) Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28:1647–1649.  https://doi.org/10.1093/bioinformatics/bts199 CrossRefPubMedPubMedCentralGoogle Scholar
  74. Lessa R, Santana F, Menni R, Almeida Z (1999) Population structure and reproductive biology of the smalltail shark (Carcharhinus porosus) off Maranhão (Brazil). Mar Freshw Res 50:383–388.  https://doi.org/10.1071/MF98127 CrossRefGoogle Scholar
  75. Lessa R, Quijano SM, Santana FM, Monzini J (2006) Rhizoprionodon porosus. The IUCN Red List of Threatened Species 2006:eT61407A12473033  https://doi.org/10.2305/iucnuk2006rltst61407a12473033en. Accessed 14 Sept 2018
  76. Lessa R, Batista VS, Santana FM (2016) Close to extinction? The collapse of the endemic daggernose shark (Isogomphodon oxyrhynchus) off Brazil. Glob Ecol Conserv 7:70–81.  https://doi.org/10.1016/j.gecco.2016.04.003 CrossRefGoogle Scholar
  77. Liu SYV, Chan CLC, Lin O, Hu CS, Chen CA (2013) DNA barcoding of shark meats identify species composition and CITES-listed species from the markets in Taiwan. PLoS ONE 8(11):e79373.  https://doi.org/10.1371/journal.pone.0079373 CrossRefPubMedPubMedCentralGoogle Scholar
  78. Mauri M, Elli T, Caviglia G, Uboldi G, Azzi M (2017) RAWGraphs: a visualisation platform to create open outputs. In: Proceedings of the 12th biannual conference on Italian SIGCHI chapter (p. 28). ACM.  https://doi.org/10.1145/3125571.3125585
  79. Mendonça FF, Hashimoto DT, Porto-Foresti F, Oliveira C, Gadig OBF, Foresti F (2009) Identification of the shark species Rhizoprionodon lalandii and R. porosus (Elasmobranchii, Carcharhinidae) by multiplex PCR and PCR-RFLP techniques. Mol Ecol Resour 9:771–773.  https://doi.org/10.1111/j1755-0998200902524x CrossRefPubMedGoogle Scholar
  80. Mendonça FF, Hashimoto DT, De-Franco B, Porto-Foresti F, Gadig OBF, Oliveira C, Foresti F (2010) Genetic identification of lamniform and carcharhiniform sharks using multiplex-PCR. Conserv Genet Resour 2:31–35.  https://doi.org/10.1007/s12686-009-9131-7 CrossRefGoogle Scholar
  81. Miller MA, Pfeiffer W, Schwartz T (2010) Creating the CIPRES science gateway for inference of large phylogenetic trees. In: Gateway computing environments workshop (GCE), pp 1–8.  https://doi.org/10.1109/gce20105676129
  82. Molina JM, Cooke SJ (2012) Trends in shark bycatch research: current status and research needs. Rev Fish Biol Fish 22:719–737.  https://doi.org/10.1007/s11160-012-9269-3 CrossRefGoogle Scholar
  83. Musick JA, Burgess G, Cailliet G, Camhi M, Fordham S (2000) Management of sharks and their relatives (Elasmobranchii). Fisheries 25:9–13.  https://doi.org/10.1577/1548-8446(2000)025%3C0009:MOSATR%3E20CO;2 CrossRefGoogle Scholar
  84. Myers RA, Worm B (2005) Extinction, survival or recovery of large predatory fishes. Philos Trans R Soc B 360(1453):13–20.  https://doi.org/10.1098/rspb.2007.1295 CrossRefGoogle Scholar
  85. Oliver S, Braccini M, Newman SJ, Harvey ES (2015) Global patterns in the bycatch of sharks and rays. Mar Policy 54:86–97.  https://doi.org/10.1016/jmarpol201412017 CrossRefGoogle Scholar
  86. Pauly D, Zeller D (2016) Catch reconstructions reveal that global marine fisheries catches are higher than reported and declining. Nat Commun 7:n10244.  https://doi.org/10.1038/ncomms10244 CrossRefGoogle Scholar
  87. Pauly D, Palomares ML, Froese R, Sa-a P, Vakily M, Preikshot D, Wallace S (2001) Fishing down Canadian aquatic food webs. Can J Fish Aquat Sci 58(1):51–62.  https://doi.org/10.1139/f00-193 CrossRefGoogle Scholar
  88. Pinheiro HT, Di Dario F, Gerhardinger LC, Melo MR, Moura RL, Reis RE, Hazin FHV, Zuanon J, Rocha LA (2015) Brazilian aquatic biodiversity in peril. Science 350(6264):1043–1044.  https://doi.org/10.1126/science.350.6264.1043-a CrossRefPubMedGoogle Scholar
  89. Rambaut A (2012) FigTree v143 molecular evolution, phylogenetics and epidemiology. University of Edinburgh, Institute of Evolutionary Biology, Edinburgh. http://tree.bio.ed.ac.uk/software/figtree/. Accessed 20 Nov 2018
  90. Rambaut A, Drummond AJ, Xie D, Baele G, Suchard MA (2018) Posterior summarisation in Bayesian phylogenetics using Tracer 1.7. Syst Biol.  https://doi.org/10.1093/sysbio/syy032 CrossRefPubMedPubMedCentralGoogle Scholar
  91. Ratnasingham S, Hebert PD (2007) BOLD: the barcode of life data system. Mol Ecol Notes 7:355–364.  https://doi.org/10.1111/j1471-8286200701678x CrossRefPubMedPubMedCentralGoogle Scholar
  92. Ratnasingham S, Hebert PD (2013) A DNA-based registry for all animal species: the Barcode Index Number (BIN) system. PLoS ONE 8:e66213.  https://doi.org/10.1371/journalpone0066213 CrossRefPubMedPubMedCentralGoogle Scholar
  93. Ribeiro ADO, Caires RA, Mariguela TC, Pereira LHG, Hanner R, Oliveira C (2012) DNA barcodes identify marine fishes of São Paulo State, Brazil. Mol Ecol Resour 12(6):1012–1020.  https://doi.org/10.1111/1755-0998.12007 CrossRefPubMedGoogle Scholar
  94. Rigby CL, Barreto R, Carlson J, Fernando D, Fordham S, Francis MP, Jabado RW, Liu KM, Marshall A, Pacoureau N, Romanov E, Sherley RB, Winker H (2019) Isurus oxyrinchus. The IUCN Red List of Threatened Species 2019:e.T39341A2903170.  https://doi.org/10.2305/IUCN.UK.2019-1.RLTS.T39341A2903170.en
  95. Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574.  https://doi.org/10.1093/bioinformatics/btg180 CrossRefPubMedPubMedCentralGoogle Scholar
  96. Schiller L, Alava JJ, Grove J, Reck G, Pauly D (2015) The demise of Darwin’s fishes: evidence of fishing down and illegal shark finning in the Galápagos Islands. Aquat Conserv 25:431–446.  https://doi.org/10.1002/aqc2458 CrossRefGoogle Scholar
  97. Sembiring A, Pertiwi NPD, Mahardini A, Wulandari R, Kurniasih EM, Kuncoro AW, Cahyani ND, Anggoro AW, Ulfa M, Madduppa H, Carpenter KE (2015) DNA barcoding reveals targeted fisheries for endangered sharks in Indonesia. Fish Res 164:130–134.  https://doi.org/10.1016/j.fishres.2014.11.003 CrossRefGoogle Scholar
  98. Shea KH, To AWL (2017) From boat to bowl: patterns and dynamics of shark fin trade in Hong Kong—implications for monitoring and management. Mar Policy 81:330–339CrossRefGoogle Scholar
  99. Shivji M, Clarke S, Pank M, Natanson L, Kohler N, Stanhope M (2002) Genetic identification of pelagic shark body parts for conservation and trade monitoring. Conserv Biol 16:1036–1047.  https://doi.org/10.1046/j1523-1739200201188x CrossRefGoogle Scholar
  100. Sibert J, Hampton J, Kleiber P, Maunder M (2006) Biomass, size, and trophic status of top predators in the Pacific Ocean. Science 314(5806):1773–1776.  https://doi.org/10.1126/science.1135347 CrossRefPubMedGoogle Scholar
  101. Sims DW, Mucientes G, Queiroz N (2018) Shortfin mako sharks threatened by inaction. Science 359:1342.  https://doi.org/10.1126/scienceaat0315 CrossRefPubMedGoogle Scholar
  102. Steinke D, Bernard AM, Horn RL, Hilton P, Hanner R, Shivji MS (2017) DNA analysis of traded shark fins and mobulid gill plates reveals a high proportion of species of conservation concern. Sci Rep 7:9505.  https://doi.org/10.1038/s41598-017-10123-5 CrossRefPubMedPubMedCentralGoogle Scholar
  103. Stevens JD, Bonfil R, Dulvy NK, Walker PA (2000) The effects of fishing on sharks, rays, and chimaeras (chondrichthyans), and the implications for marine ecosystems. ICES J Mar Sci 57:476–494.  https://doi.org/10.1006/jmsc20000724 CrossRefGoogle Scholar
  104. Suchard MA, Lemey P, Baele G, Ayres DL, Drummond AJ, Rambaut A (2018) Bayesian phylogenetic and phylodynamic data integration using BEAST 110. Virus Evol 4:vey016.  https://doi.org/10.1093/ve/vey016 CrossRefPubMedPubMedCentralGoogle Scholar
  105. Symes D (2006) Fisheries governance: a coming of age for fisheries social science? ‎Fish Res 81(2-3):113–117.  https://doi.org/10.1023/A:1008946522213 CrossRefGoogle Scholar
  106. Towns J, Cockerill T, Dahan M, Foster I, Gaither K, Grimshaw A, Hazlewood V, Hazlewood V, Lathrop S, Lifka D, Peterson GD, Roskies R (2014) XSEDE: accelerating scientific discovery. Comput Sci Eng 16:62–74.  https://doi.org/10.1109/MCSE201480 CrossRefGoogle Scholar
  107. van Velzen R, Weitschek E, Felici G, Bakker FT (2012) DNA barcoding of recently diverged species: relative performance of matching methods. PLoS ONE 7:e30490.  https://doi.org/10.1371/journalpone0030490 CrossRefPubMedPubMedCentralGoogle Scholar
  108. Walters CJ (2007) Is adaptive management helping to solve fisheries problems. Ambio 36(4):304–308.  https://doi.org/10.1579/0044-7447(2007)36%5b304:IAMHTS%5d2.0.CO;2 CrossRefPubMedGoogle Scholar
  109. Ward RD, Zemlak TS, Innes BH, Last PR, Hebert PD (2005) DNA barcoding Australia’s fish species. Philos Trans R Soc Lond B 360:1847–1857.  https://doi.org/10.1098/rstb20051716 CrossRefGoogle Scholar
  110. Ward RD, Holmes BH, White WT, Last PR (2008) DNA barcoding Australasian chondrichthyans: results and potential uses in conservation. Mar Freshw Res 59(1):57–71.  https://doi.org/10.1071/MF07148 CrossRefGoogle Scholar
  111. Ward RD, Hanner R, Hebert PD (2009) The campaign to DNA barcode all fishes. J Fish Biol 74(2):329–356.  https://doi.org/10.1111/j.1095-8649.2008.02080.x CrossRefPubMedGoogle Scholar
  112. Wong EHK, Shivji MS, Hanner RH (2009) Identifying sharks with DNA barcodes: assessing the utility of a nucleotide diagnostic approach. Mol Ecol Res 9:243–256CrossRefGoogle Scholar
  113. Worm B, Davis B, Kettemer L, Ward-Paige CA, Chapman D, Heithaus MR, Kessel ST, Gruber SH (2013) Global catches, exploitation rates, and rebuilding options for sharks. Mar Policy 40:194–204.  https://doi.org/10.1016/jmarpol201212034 CrossRefGoogle Scholar
  114. Xia X (2017) DAMBE6: new tools for microbial genomics, phylogenetics, and molecular evolution. J Hered 4:431–437.  https://doi.org/10.1093/jhered/esx033 CrossRefGoogle Scholar
  115. Xia X, Xie Z, Salemi M, Chen L, Wang Y (2003) An index of substitution saturation and its application. Mol Phylogenet Evol 26:1–7.  https://doi.org/10.1016/S1055-7903(02)00326-3 CrossRefPubMedGoogle Scholar
  116. Yule GU (1925) A mathematical theory of evolution, based on the conclusions of Dr JC Willis, FRS. Philos Trans R Soc Lond B 213:21–87.  https://doi.org/10.1098/rstb19250002 CrossRefGoogle Scholar
  117. Zeller D, Pauly D (2005) Good news, bad news: global fisheries discards are declining, but so are total catches. Fish Fish 6:156–159.  https://doi.org/10.1111/j1467-2979200500177x CrossRefGoogle Scholar
  118. Zeller D, Harper S, Zylich K, Pauly D (2015) Synthesis of underreported small-scale fisheries catch in Pacific island waters. Coral Reefs 34:25–39.  https://doi.org/10.1007/s00338-014-1219-1 CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Bruno Lopes da Silva Ferrette
    • 1
    • 2
  • Rodrigo Rodrigues Domingues
    • 2
    Email author
  • Luis Henrique Fregadolli Ussami
    • 3
  • Letícia Moraes
    • 4
  • Carolina de Oliveira Magalhães
    • 2
    • 3
  • Alberto Ferreira de Amorim
    • 5
  • Alexandre Wagner Silva Hilsdorf
    • 4
  • Claudio Oliveira
    • 3
  • Fausto Foresti
    • 3
  • Fernando Fernandes Mendonça
    • 2
  1. 1.Laboratório de Genética e ConservaçãoUniversidade Santa Cecília (UNISANTA)SantosBrazil
  2. 2.Laboratório de Genética Pesqueira e Conservação (GenPesC), Instituto do Mar (IMar)Universidade Federal de São Paulo (UNIFESP)SantosBrazil
  3. 3.Laboratório de Biologia e Genética de Peixes (LBGP), Instituto de Biociências de Botucatu (IBB)Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP)BotucatuBrazil
  4. 4.Núcleo Integrado de BiotecnologiaUniversidade de Mogi das CruzesMogi das CruzesBrazil
  5. 5.Fisheries Institute (IP)SantosBrazil

Personalised recommendations