Advertisement

Lichens in old-growth and managed mountain spruce forests in the Czech Republic: assessment of biodiversity, functional traits and bioindicators

  • Jiří MalíčekEmail author
  • Zdeněk Palice
  • Jan Vondrák
  • Martin Kostovčík
  • Veronika Lenzová
  • Jeňýk Hofmeister
Original Paper
  • 28 Downloads
Part of the following topical collections:
  1. Forest and plantation biodiversity

Abstract

Natural spruce forests are restricted to the highest mountain ranges in the Czech Republic. Spruce is also the commonest tree species in managed forests. Owing to a massive decline of spruce forests in Central Europe, caused by recent climatic fluctuations and disturbances, the lichen diversity and species composition was compared between ten representative natural mountain old-growth forests in the Czech Republic and their counterparts in mature managed forests. The old-growth forests are characterized by a higher species richness, abundance, number of Red-listed species, functional, taxonomic and phylogenetic diversities. Plots with the highest species richness are situated in the Šumava Mountains, an area with a relatively low sulphur deposition in the past. Bioindication analysis searching for lichen indicators supported several species (e.g. Xylographa vitiligo, Chaenotheca sphaerocephala) and genera (e.g. Calicium, Xylographa) with a strong preference for old-growth forests. Analysis of lichen functional traits revealed a higher abundance of species with a vegetative reproduction in managed forests that may be explained by a higher efficiency in colonization by young successional stages. Lichens with stalked apothecia, pigmented ascospores and large ascospores are more frequent in old-growth forests. Our results are briefly discussed in terms of nature conservation, focusing on national refugees of old-growth forest species, biodiversity hot-spots, practical use of indicator species and representative measures for an evaluation of forest quality.

Keywords

Functional diversity Functional traits Phylogenetic diversity Species richness Substrate specialists Taxonomic diversity 

Notes

Acknowledgements

We are grateful to Mark Seaward who kindly revised the English, Martin Adámek who prepared extrapolated climatic data, Filip Oulehle who provided data on sulphur and nitrogen deposition, and Jana Kocourková, Ilona Sommerová and Lucie Zemanová who helped us during the field research. Both anonymous reviewers helped to improve the manuscript. This study was supported by the long-term research development Project RVO 67985939, Grant Project No. 1074416 from the Charles University Grant Agency and the Project EHP-CZ02-OV-1-027-2015.

Supplementary material

10531_2019_1834_MOESM1_ESM.docx (547 kb)
Supplementary material 1 (DOCX 547 kb)
10531_2019_1834_MOESM2_ESM.xlsx (47 kb)
Supplementary material 2 (XLSX 47 kb)
10531_2019_1834_MOESM3_ESM.xlsx (34 kb)
Supplementary material 3 (XLSX 34 kb)

References

  1. Aptroot A, van Herk CM (2006) Further evidence of the effects of global warming on lichens, particularly those with a Trentepholia phycobiont. Environ Pollut 146:293–298CrossRefPubMedGoogle Scholar
  2. Ardelean IV, Keller C, Scheidegger C (2015) Effects of management on lichen species richness, ecological traits and community structure in the Rodnei Mountains National Park (Romania). PLoS ONE.  https://doi.org/10.1371/journal.pone.0145808 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Bailey RH (1976) Ecological aspects of dispersal and establishment in lichens. In: Brown DH, Hawksworth DL, Bailey RH (eds) Lichenology: progress and problems. Academic Press, London, pp 215–247Google Scholar
  4. Barkman JJ (1958) Phytosociology and ecology of cryptogamic epiphytes. Van Gorcum, AssenGoogle Scholar
  5. Bässler C, Cadotte MW, Beudert B, Heibl C, Blaschke M, Bradtka JH, Langbehn T, Werth S, Müller J (2016) Contrasting patterns of lichen functional diversity and species richness across an elevation gradient. Ecography 39:689–698CrossRefGoogle Scholar
  6. Bazalová D, Botková K, Hegedüšová K, Májeková J, Medvecká J, Šibíková M, Škodová I, Zaliberová M, Jarolímek I (2018) Twin plots—appropriate method to assess the impact of alien tree on understorey? Hacquetia 17:163–169CrossRefGoogle Scholar
  7. Bengtsson J, Nilsson SG, Franc A, Menozzi P (2000) Biodiversity, disturbances, ecosystem function and management of European forests. For Ecol Manage 132:39–50CrossRefGoogle Scholar
  8. Benítez A, Aragón G, González Y, Prieto M (2018) Functional traits of epiphytic lichens in response to forest disturbance and as predictors of total richness and diversity. Ecol Indic 86:18–26CrossRefGoogle Scholar
  9. Boch S, Prati D, Hessenmöller D, Schulze ED, Fischer M (2013) Richness of lichen species, especially of threatened ones, is promoted by management methods furthering stand continuity. PLoS ONE.  https://doi.org/10.1371/journal.pone.0055461 CrossRefPubMedPubMedCentralGoogle Scholar
  10. Botta-Dukát Z (2005) Rao’s quadratic entropy as a measure of functional diversity based on multiple traits. J Veg Sci 16:533–540CrossRefGoogle Scholar
  11. Bowler PA, Rundel PW (1975) Reproductive strategies in lichens. Bot J Linn Soc 70:325–340CrossRefGoogle Scholar
  12. Bradtka J, Bässler C, Müller J (2010) Baumbewohnende Flechten als Zeiger für Prozessschutz und ökologische Kontinuität im Nationalpark Bayerischer Wald. Waldökologie, Landschaftsforschung und Naturschutz 9:49–63Google Scholar
  13. Brockerhoff EG, Barbaro L, Castagneyrol B et al (2017) Forest biodiversity, ecosystem functioning and the provision of ecosystem services. Biodivers Conserv 26:3005–3035CrossRefGoogle Scholar
  14. Brooks TM, Mittermeier RA, da Fonseca GAB, Gerlach J, Hoffmann J, Lamoreux JF, Mittermeier CG, Pilgrim JD, Rodrigues ASL (2006) Global biodiversity conservation priorities. Science 313:58–61CrossRefPubMedGoogle Scholar
  15. Buschbom J, Mueller GM (2006) Testing “species pair” hypotheses: evolutionary processes in the lichen-forming species complex Porpidia flavocoerulescens and Porpidia melinodes. Mol Biol Evol 23:574–586CrossRefPubMedGoogle Scholar
  16. Čada V, Morrissey RC, Michalová Z, Bače R, Janda P, Svoboda M (2016) Frequent severe natural disturbances and non-equilibrium landscape dynamics shaped the mountain spruce forest in central Europe. For Ecol Manage 363:169–178CrossRefGoogle Scholar
  17. Cameron RP, Bondrup-Nielsen S (2012) Coral lichen (Sphaerophorus globosus (Huds.) Vain) as an indicator of coniferous old-growth forest in Nova Scotia. Northeast Nat 19:535–540CrossRefGoogle Scholar
  18. Caruso A, Rudolphi J, Thor G (2008) Lichen species diversity and substrate amounts in young planted boreal forests: a comparison between slash and stumps of Picea abies. Biol Conserv 141:47–55CrossRefGoogle Scholar
  19. Castresana J (2000) Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol 175:40–52Google Scholar
  20. Chytrý M (2017) Current Vegetation of the Czech Republic. In: Chytrý M, Danihelka J, Kaplan Z, Pyšek P (eds) Flora and vegetation of the Czech Republic. Plant Veg 14:229–338Google Scholar
  21. Clarke KR, Warwick RM (1998) A taxonomic distinctness index and its statistical properties. J Appl Ecol 35:523–531CrossRefGoogle Scholar
  22. Clarke KR, Warwick RM (2001) A further biodiversity index applicable to species lists: variation in taxonomic distinctness. Mar Ecol Prog Ser 216:265–278CrossRefGoogle Scholar
  23. Conti ME, Cecchetti G (2001) Biological monitoring: lichens as bioindicators of air pollution assessment—a review. Environ Pollut 114:471–492CrossRefPubMedPubMedCentralGoogle Scholar
  24. De Cácerés M, Jansen F (2015) Relationship between species and groups of sites. R package ʻindicspeciesʼ, version 1.7.4Google Scholar
  25. Debastini VJ (2018) Analysis of functional and phylogenetic patterns in metacommunities. R package ʼSYNCSAʼ, version 1.3.3Google Scholar
  26. Dittrich S, Hauck M, Schweigatz D, Dörfler I, Hühne R, Bade C, Jacob M, Leuschner C (2013) Separating forest continuity from tree age effects on plant diversity in the groundand epiphyte vegetation of a Central European mountain spruce forest. Flora 208:238–246CrossRefGoogle Scholar
  27. Dittrich S, Jacob M, Bade C, Leuschner C, Hauck M (2014) The significance of deadwood for total bryophyte, lichen, and vascular plant diversity in an old-growth spruce forest. Plant Ecol 215:1123–1137CrossRefGoogle Scholar
  28. Durrell LW (1964) The composition and structure of walls of dark fungus spores. Mycopathologia 23:339–345Google Scholar
  29. Dyderski MK, Paź S, Frelich LE, Jagodziński AM (2017) How much does climate change threaten European forest tree species distributions? Glob Change Biol 24:1150–1163CrossRefGoogle Scholar
  30. Ellis CJ (2012) Lichen epiphyte diversity: a species, community and trait-based review. Persp Plant Ecol Evol Syst 14:131–152CrossRefGoogle Scholar
  31. Ellis CJ, Coppins BJ (2006) Contrasting functional traits maintain lichen epiphyte diversity in response to climate and autogenic succession. J Biogeogr 33:1643–1656CrossRefGoogle Scholar
  32. Ellis CJ, Coppins BJ (2007) Reproductive strategy and the compositional dynamics of crustose lichen communities on aspen (Populus tremula L.) in Scotland. Lichenologist 39:377–391CrossRefGoogle Scholar
  33. Ertz D, Guzow-Krzemińska B, Thor G, Łubek A, Kukwa M (2018) Photobiont switching causes changes in the reproduction strategy and phenotypic dimorphism in the Arthoniomycetes. Sci Rep.  https://doi.org/10.1038/s41598-018-23219-3 CrossRefPubMedPubMedCentralGoogle Scholar
  34. Esseen PA (2006) Edge influence on the old-growth forest indicator lichen Alectoria sarmentosa in natural ecotones. J Veg Sci 17:185–194Google Scholar
  35. Esseen PA, Renhorn KE, Pettersson RB (1996) Epiphytic lichen biomass in managed and old-growth boreal forests: effect of branch quality. Ecol Appl 6:228–238CrossRefGoogle Scholar
  36. Faith DP (1992) Conservation evaluation and phylogenetic diversity. Biol Conserv 61:1–10CrossRefGoogle Scholar
  37. Friedl T, Büdel B (2008) Photobionts. In: Nash TH (ed) Lichen biology. Cambridge University Press, Cambridge, pp 9–26CrossRefGoogle Scholar
  38. Gauslaa Y, Lie M, Ohlson M (2008) Epiphytic lichen biomass in a boreal Norway spruce forest. Lichenologist 40:257–266CrossRefGoogle Scholar
  39. Giordani P, Brunialti G, Bacaro G, Nascimbene J (2012) Functional traits of epiphytic lichens as potential indicators of environmental conditions in forest ecosystems. Ecol Indic 18:413–420CrossRefGoogle Scholar
  40. Guttová A, Košuthová A, Barbato D, Paoli L (2017) Functional and morphological traits of epiphytic lichens in the Western Carpathian oak forests reflect the influence of air quality and forest history. Biologia 72:1247–1257CrossRefGoogle Scholar
  41. Hafellner J, Komposch H (2007) Diversität epiphytischer Flechten und lichenicoler Pilze in einem mitteleuropäischen Urwaldrest und einem angrenzenden Forst. Herzogia 20:87–113Google Scholar
  42. Halonen P, Hyvärinen M, Kauppi M (1991) The epiphytic lichen flora on conifers in relation to climate in the finnish middle boreal subzone. Lichenologist 23:61–72CrossRefGoogle Scholar
  43. Hanski I (1999) Metapopulation ecology. Oxford University Press, OxfordGoogle Scholar
  44. Harper JL, Hawksworth DL (1994) Biodiversity: measurement and estimation. Philos Trans R Soc Lond Ser B 345:5–12CrossRefGoogle Scholar
  45. Hedenås H, Ericson L (2000) Epiphytic macrolichens as conservation indicators: successional sequence in Populus tremula stands. Biol Conserv 93:43–53CrossRefGoogle Scholar
  46. Hedenås H, Bolyukh VO, Jonsson BG (2003) Spatial distribution of epiphytes on Populus tremula in relation to dispersal mode. J Veg Sci 14:233–242CrossRefGoogle Scholar
  47. Hilmo O, Holien H (2002) Epiphytic lichen response to the edge environment in a boreal Picea abies forest in Central Norway. Bryologist 105:48–56CrossRefGoogle Scholar
  48. Hilmo O, Såstad SM (2001) Colonization of old-forest lichens in a young and an old boreal Picea abies forest: an experimental approach. Biol Conserv 102:251–259CrossRefGoogle Scholar
  49. Hilmo O, Holien H, Hytteborn H, Ely-Aalstrup H (2009) Richness of epiphytic lichens in differently aged Picea abies plantations situated in the oceanic region of Central Norway. Lichenologist 41:97–108CrossRefGoogle Scholar
  50. Hofmeister J, Hošek J, Brabec M et al (2015) Value of old forest attributes related to cryptogam species richness in temperate forests: a quantitative assessment. Ecol Indic 57:497–504CrossRefGoogle Scholar
  51. Holien H (1996) Influence of site and stand factors on the distribution of crustose lichens of the Caliciales in a suboceanic spruce forest area. Lichenologist 28:315–330CrossRefGoogle Scholar
  52. Holien H (1997) The lichen flora on Picea abies in a suboceanic spruce forest area in Central Norway with emphasis on the relationship to site and stand parameters. Nordic J Bot 17:55–76CrossRefGoogle Scholar
  53. Hyvärinen M, Halonen P, Kauppi M (1992) Influence of stand age and structure on the epiphytic lichen vegetation in the middle-boreal forests of Finland. Lichenologist 24:165–180CrossRefGoogle Scholar
  54. Jahns HM (1988) The establishment, individuality and growth of lichen thalli. Bot J Linn Soc 96:21–29CrossRefGoogle Scholar
  55. Jirásek J (1996) Společenstva přirozených smrčin České republiky [Natural spruce forest communities in the Czech Republic]. Preslia 67(1995):225–259Google Scholar
  56. Johansson P, Rydin H, Thor G (2007) Tree age relationships with epiphytic lichen diversity and lichen life history traits on ash in southern Sweden. Ecoscience 14:81–91CrossRefGoogle Scholar
  57. Johansson V, Snäll T, Ranius T (2012) Epiphyte metapopulation dynamics are explained by species traits, connectivity and patch dynamics. Ecology 93:235–241CrossRefPubMedGoogle Scholar
  58. Katoh K, Standley DM (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 30:772–780CrossRefPubMedPubMedCentralGoogle Scholar
  59. Katoh K, Misawa K, Kuma K, Miyata T (2002) MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucl Acids Res 30:3059–3066CrossRefPubMedGoogle Scholar
  60. Kembel SW, Ackerly DD, Blomberg P, Cornwell WK, Cowan PD, Helmus MR, Morlon H, Cambell OW (2014) R tools for integrating phylogenesis and ecology. R package ʻpicanteʻ, version 1.6-2Google Scholar
  61. Koch NM, Martins SMA, Lucheta F, Müller SC (2013) Functional diversity and traits assembly patterns of lichens as indicators of successional stages in a tropical rain forest. Ecol Indic 34:22–30CrossRefGoogle Scholar
  62. Kocourková J (2000) Lichenicolous fungi of the Czech Republic. Acta Mus Nat Pragae Ser B Hist Nat 55(1999):59–169Google Scholar
  63. Komsta L (2015) Tests for outliers. R-package ʻoutliersʼ, version 0.14Google Scholar
  64. Kotwal PC, Kandari LS, Dugaya D (2008) Bioindicators in sustainable management of tropical forests in India. Afr J Plant Sci 2:99–104Google Scholar
  65. Krieger DJ (2001) The economic value of forest ecosystem services: a review. The Wilderness Society, WashingtonGoogle Scholar
  66. Kruys N, Fries C, Jonsson BG, Lämås T, Stål G (1999) Wood-inhabiting cryptogams on dead Norway spruce (Picea abies) trees in managed Swedish boreal forests. Can J Forest Res 29:178–186CrossRefGoogle Scholar
  67. Kubíková J (1991) Forest dieback in Czechoslovakia. Vegetation 93:101–108CrossRefGoogle Scholar
  68. Kuldeep S, Prodyut B (2015) Lichen as a bio-indicator tool for assessment of climate and air pollution vulnerability: review. Int Res J Environ Sci 4:107–117Google Scholar
  69. Kuusinen M (1996) Cyanobacterial macrolichens on Populus tremula as indicators of forest continuity in Finland. Biol Conserv 75:43–49CrossRefGoogle Scholar
  70. Kuusinen M, Siitonen J (1998) Epiphytic lichen diversity in old-growth and managed Picea abies stands in southern Finland. J Veg Sci 9:283–292CrossRefGoogle Scholar
  71. Laliberté E, Legendre P (2010) A distance-based framework for measuring functional diversity from multiple traits. Ecology 91:299–305CrossRefGoogle Scholar
  72. Lelli C, Bruun HH, Chiarucci A, Donati D, Frascaroli F, Fritz Ö, Goldberg I, Nascimbene J, Tøttrup AP, Rahbek C, Heilmann-Clausen J (2019) Biodiversity response to forest structure and management: comparing species richness, conservation relevant species and functional diversity as metrics in forest conservation. For Ecol Manage 432:707–717CrossRefGoogle Scholar
  73. Li S, Liu WY, Li DW (2013) Bole epiphytic lichens as potential indicators of environmental change in subtropical forest ecosystems in southwest China. Ecol Indic 29:93–104CrossRefGoogle Scholar
  74. Lie MH, Arup U, Grytnes JA, Ohlson M (2009) The importance of host tree age, size and growth rate as determinants of epiphytic lichen diversity in boreal spruce forests. Biodivers Conserv 18:3579–3596CrossRefGoogle Scholar
  75. Liira J, Sepp T, Parrest O (2007) The forest structure and ecosystem quality in conditions of anthropogenic disturbance along productivity gradient. For Ecol Manage 250:34–46CrossRefGoogle Scholar
  76. Liška J, Palice Z (2010) Červený seznam lišejníků České republiky (verze 1.1) [Red List of lichens of the Czech Republic (version 1.1)]. Příroda 29:3–66Google Scholar
  77. Liška J, Dětinský R, Palice Z (1996) Importance of the Šumava Mts. for the biodiversity of lichens in the Czech Republic. Silva Gabreta 1:71–81Google Scholar
  78. Liška J, Dětinský R, Palice Z (1998) A project on distribution changes of lichens in the Czech Republic. Sauteria 9:351–360Google Scholar
  79. Liška J, Palice Z, Dětinský R, Vondrák J (2006) Changes in distribution of rare and threatened lichens in the Czech Republic II. In: Lackovičová A, Guttová A, Lisická E, Lizoň P (eds) Central European lichens—diversity and threat. Mycotaxon Ltd., Ithaca, pp 241–258Google Scholar
  80. Löbel S, Snäll T, Rydin H (2006) Species richness patterns and metapopulation processes—evidence from epiphyte communities in boreo-nemoral forests. Ecography 29:169–182CrossRefGoogle Scholar
  81. Loo JA (2009) The role of forests in the preservation of biodiversity. In: Owens JN, Lund HG (eds) Forests and forest plants. UNESCO and EOLSS Publishers, ParisGoogle Scholar
  82. Łubek A, Kukwa M, Jaroszewicz B, Czortek P (2018) Changes in the epiphytic lichen biota of Białowieża Primeval Forest are not explained by climate warming. Sci Total Environ 643:468–478CrossRefPubMedGoogle Scholar
  83. Lundström J, Jonsson F, Perhans K, Gustafsson L (2013) Lichen species richness on retained aspens increases with time since clear-cutting. For Ecol Manage 293:49–56CrossRefGoogle Scholar
  84. Malíček J, Berger F, Bouda F, Cezanne R, Eichler M, Halda JP, Langbehn T, Palice Z, Šoun J, Uhlík P, Vondrák J (2017a) Lichens recorded during the Bryological and Lichenological meeting in Mohelno (Třebíč region, southwestern Moravia) in spring 2016. Bryonora 60:24–45Google Scholar
  85. Malíček J, Berger F, Palice Z, Vondrák J (2017b) Corticolous sorediate Lecanora species (Lecanoraceae, Ascomycota) containing atranorin in Europe. Lichenologist 49:431–455CrossRefGoogle Scholar
  86. Malíček J, Palice Z, Vondrák J (2018) Additions and corrections to the lichen biota of the Czech Republic. Herzogia 31:453–475CrossRefGoogle Scholar
  87. Marini L, Nascimbene J, Nimis PL (2011) Large-scale patterns of epiphytic lichen species richness: photobiont-dependent response to climate and forest structure. Sci Total Environ 409:4381–4386CrossRefPubMedGoogle Scholar
  88. Marmor L, Tõrra T, Saag L, Randlane T (2011) Effects of forest continuity and tree age on epiphytic lichen biota in coniferous forests in Estonia. Ecol Indic 11:1270–1276CrossRefGoogle Scholar
  89. Marmor L, Tõrra T, Saag L, Randlane T (2012) Species richness of epiphytic lichens in coniferous forests: the effect of canopy openness. Ann Bot Fenn 49:352–358CrossRefGoogle Scholar
  90. Molnár K, Farkas E (2010) Current results on biological activities of lichen secondary metabolites: a review. Z Naturfors C 65:157–173CrossRefGoogle Scholar
  91. Mráz K (1959) Příspěvek k poznání původnosti smrku a jedle ve vnitrozemí Čech [Contribution to knowledge of natural occurrence of spruce and fir in inland Bohemia]. Práce Výzkumných ústavů lesnických ČSR 17:135–180Google Scholar
  92. Müller J, Bußler H, Goßner M, Rettelbach T, Duelli P (2008) The European spruce bark beetle Ips typographus in a national park: from pest to keystone species. Biodivers Conserv 17:2979–3001CrossRefGoogle Scholar
  93. Nascimbene J, Marini L (2015) Epiphytic lichen diversity along elevational gradients: biological traits reveal a complex response to water and energy. J Biogeogr 42:1222–1232CrossRefGoogle Scholar
  94. Nascimbene J, Marini L, Motta R, Nimis PL (2009) Influence of tree age, tree size and crown structure on lichen communities in mature Alpine spruce forests. Biodivers Conserv 18:1509–1522CrossRefGoogle Scholar
  95. Nascimbene J, Marini L, Nimis PL (2010) Epiphytic lichen diversity in old-growth and managed Picea abies stands in Alpine spruce forests. For Ecol Manage 260:603–609CrossRefGoogle Scholar
  96. NATURALFORESTS.CZ (2018) Naturalforests.cz, Natural forests of the Czech Republic. http://naturalforests.cz/
  97. Nilsson SG, Hedin J, Niklasson M (2001) Biodiversity and its assessment in boreal and nemoral forests. Scand J Forest Res 16(suppl. 3):10–26CrossRefGoogle Scholar
  98. Nožička J (1957) Přehled vývoje našich lesů [Historical overview of our forests]. Státní zemědělské nakladatelství, PrahaGoogle Scholar
  99. Nožička J (1972) Původní výskyt smrku v českých zemích [Original occurrence of spruce in the Bohemian lands]. Státní zemědělské nakladatelství, PrahaGoogle Scholar
  100. Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Stevens MHH, Szoecs E, Wagner H (2018) Community ecology package. R-package ʻveganʼ, version 2.5-2Google Scholar
  101. Orange A, James PW, White FJ (2010) Microchemical methods for the identification of lichens. British Lichen Society, LondonGoogle Scholar
  102. Palice Z, Malíček J, Peksa O, Vondrák J (2018) New remarkable records and range extensions in the central European lichen biota. Herzogia 31:518–534CrossRefGoogle Scholar
  103. Pentecost A (1981) Some observations on the size and shape of lichen ascospores in relation to ecology and taxonomy. New Phytol 89:667–678CrossRefGoogle Scholar
  104. Petchey OL, Gaston KJ (2002) Functional diversity (FD), species richness and community composition. Ecol Lett 5:402–411CrossRefGoogle Scholar
  105. Petchey OL, Hector A, Gaston KJ (2004) How do different measures of functional diversity perform? Ecology 85:847–857CrossRefGoogle Scholar
  106. Ponocná T, Spyt B, Kaczka R, Büntgen U, Treml V (2016) Growth trends and climate responses of Norway spruce along elevational gradients in East-Central Europe. Trees 30:1633–1646CrossRefGoogle Scholar
  107. Prieto M, Baloch E, Tehler A, Wedin M (2013) Mazaedium evolution in the Ascomycota (Fungi) and the classification of mazaediate groups of formerly unclear relationship. Cladistics 29:296–308CrossRefGoogle Scholar
  108. Prieto M, Martínez I, Aragón G, Verdú M (2017) Phylogenetic and functional structure of lichen communities under contrasting environmental conditions. J Veg Sci 28:871–881CrossRefGoogle Scholar
  109. R Core Team (2018) R: A language and environment for statistical computing. The R Foundation for Statistical Computing, ViennaGoogle Scholar
  110. Rabinowitsch-Jokinen R, Laaka-Lindberg S, Vanha-Majamaa I (2012) Immediate effects of logging, mounding, and removal of logging residues on epixylic species in managed boreal Norway Spruce stands in southern Finland. J Sustain For 31:205–229CrossRefGoogle Scholar
  111. Rehnstrom A, Free S (1996) The isolation and characterization of melanin-deficient mutants of Monilinia fructicola. Physiol Mol Plant 49:321–330CrossRefGoogle Scholar
  112. Resl P, Fernández-Mendoza F, Mayrhofer H, Spribille T (2018) The evolution of fungal substrate specificity in a widespread group of crustose lichens. Proc R Soc B.  https://doi.org/10.1098/rspb.2018.0640 CrossRefPubMedGoogle Scholar
  113. Rogers RW (1990) Ecological strategies of lichens. Lichenologist 22:149–162CrossRefGoogle Scholar
  114. Sætersdal M, Gjerde I, Blom H (2005) Indicator species and the problem of spatial inconsistency in nestedness patterns. Biol Conserv 122:305–316CrossRefGoogle Scholar
  115. Sanders WB, Lücking R (2002) Reproductive strategies, relichenization and thallus development observed in situ in leaf-dwelling lichen communities. New Phytol 155:425–435CrossRefGoogle Scholar
  116. Selva SB (1994) Lichen diversity and stand continuity in northern hardwoods and spruce-fir forests of northern New England and western New Brunswick. Bryologist 97:424–429CrossRefGoogle Scholar
  117. Shapiro SS, Wilk MB (1965) An analysis of variance test for normality (complete samples). Biometrika 52:591–611CrossRefGoogle Scholar
  118. Sillett SC, McCune B, Peck JE, Rambo TR, Rutchy A (2000) Dispersal limitations of epiphytic lichens result in species dependent on old-growth forests. Ecol Appl 10:789–799CrossRefGoogle Scholar
  119. Šmilauer P, Lepš J (2014) Multivariate analysis of ecological data using Canoco 5. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  120. Smith CW, Aptroot A, Coppins BJ, Fletscher A, Gilbert OL, James PW, Wolseley PA (2009) The lichens of Great Britain and Ireland. The British Lichen Society, LondonGoogle Scholar
  121. Söderström L (1988) Sequence of bryophytes and lichens in relation to substrate variables of decaying coniferous wood in northern Sweden. Nordic J Bot 8:89–97CrossRefGoogle Scholar
  122. Spathelf P, van der Maaten E, van der Maaten-Theunissen M, Campioli M, Dobrowolska D (2014) Climate change impacts in European forests: the expert views of local observers. Ann For Sci 71:131–137CrossRefGoogle Scholar
  123. Spies TA (2004) Ecological concepts and diversity of old-growth forests. J For 102:14–20Google Scholar
  124. Spribille T, Thor G, Bunnell FL, Goward T, Björk CR (2009) Lichens on dead wood: species-substrate relationships in the epiphytic lichens floras of the Pacific Northwest and Fennoscandia. Ecography 31:741–750CrossRefGoogle Scholar
  125. Staniaszek-Kik M, Chmura D, Żarnowiec J (2019) What factors influence colonization of lichens, liverworts, mosses and vascular plants on snags? Biologia 74:375–384CrossRefGoogle Scholar
  126. Stape JL, Binkley D, Jacob WS, Takahashi EN (2006) A twin-plot approach to determine nutrient limitation and potential productivity in Eucalyptus plantations at landscape scales in Brazil. For Ecol Manage 223:358–362CrossRefGoogle Scholar
  127. Štěpánek P, Zahradníček P, Huth R (2011) Interpolation techniques used for data quality control and calculation of technical series: an example of a Central European daily time series. Idojaras 115:87–98Google Scholar
  128. Štěpánek P, Zahradníček P, Farda A (2013) Experiences with data quality control and homogenization of daily records of various meteorological elements in the Czech Republic in the period 1961–2010. Idojaras 117:123–141Google Scholar
  129. Stofer S, Bergamini A, Aragón G et al (2006) Species richness of lichen functional groups in relation to land use intensity. Lichenologist 38:331–353CrossRefGoogle Scholar
  130. Strengbom J, Dahlberg A, Larsson A, Lindelöw Å, Sandström J, Widenfalk O, Gustafsson L (2011) Introducing intensively managed spruce plantations in Swedish forest landscapes will impair biodiversity decline. Forests 2:610–630CrossRefGoogle Scholar
  131. Svensson M, Dahlberg A, Ranius T, Thor G (2013) Occurrence patterns of lichens on stumps in young managed forests. PLoS ONE.  https://doi.org/10.1371/journal.pone.0062825 CrossRefPubMedPubMedCentralGoogle Scholar
  132. Svensson M, Dahlberg A, Ranius T, Thor G (2014) Dead branches on living trees constitute a large part of the deadwood in managed boreal forests, but are not important for wood-dependent lichens. J Veg Sci 25:819–828CrossRefGoogle Scholar
  133. Svensson M, Johansson V, Dahlberg A, Frisch A, Thor G, Ranius T (2016) The relative importance of stand and dead wood types for wood-dependent lichens in managed boreal forests. Fungal Ecol 20:166–174CrossRefGoogle Scholar
  134. Svoboda D, Peksa O, Veselá J (2010) Epiphytic lichen diversity in central European oak forests: assessment of the effects of natural environmental factors and human influences. Environ Pollut 158:812–819CrossRefPubMedGoogle Scholar
  135. Szabó P, Kuneš P, Svobodová-Svitavská H, Švarcová MG, Křížová L, Suchánková S, Müllerová J, Hédl R (2017) Using historical ecology to reassess the conservation status of coniferous forests in Central Europe. Conserv Biol 31:150–160CrossRefPubMedGoogle Scholar
  136. Thom D, Seidl R (2016) Natural disturbance impacts on ecosystem services and biodiversity in temperate and boreal forests. Biol Rev 91:760–781CrossRefPubMedGoogle Scholar
  137. Thormann M (2006) Lichens as indicators of forest health in Canada. For Chron 82:335–343CrossRefGoogle Scholar
  138. Tibell L (1992) Crustose lichens as indicators of forest continuity in boreal coniferous forests. Nordic J Bot 12:427–450CrossRefGoogle Scholar
  139. Vanneste T, Valdés A, Verheyen K et al (2019) Functional trait variation of forest understorey plant communities across Europe. Basic Appl Ecol 34:1–14CrossRefGoogle Scholar
  140. Vestreng V, Myhre G, Fagerli H, Reis S, Tarrasón L (2007) Twenty-five years of continuous sulphur dioxide emission reduction in Europe. Atmos Chem Phys 7:3663–3681CrossRefGoogle Scholar
  141. Villéger S, Mason NWH, Mouillot D (2008) New multidimensional functional diversity indices for a multifaceted framework in functional ecology. Ecology 89:2290–2301CrossRefPubMedGoogle Scholar
  142. Vondrák J, Malíček J, Šoun J, Pouska V (2015) Epiphytic lichens of Stužica (E Slovakia) in the context of Central European old-growth forests. Herzogia 28:104–126CrossRefGoogle Scholar
  143. Vondrák J, Malíček J, Palice Z, Coppins B, Kukwa M, Czarnota P, Sanderson N, Acton A (2016) Methods for obtaining more complete species lists in surveys of lichen biodiversity. Nordic J Bot 34:619–626CrossRefGoogle Scholar
  144. Vondrák J, Malíček J, Palice Z, Bouda F, Berger F, Sanderson N, Acton A, Pouska V, Kish R (2018) Exploiting hot-spots; effective determination of lichen diversity in a Carpathian virgin forest. PLoS ONE.  https://doi.org/10.1371/journal.pone.0203540 CrossRefPubMedPubMedCentralGoogle Scholar
  145. Vondrák J, Urbanavichus G, Palice Z, Malíček J, Urbanavichene I, Kubásek J, Ellis C (2019) The epiphytic lichen biota of Caucasian virgin forests: a comparator for European conservation. Biodivers Conserv.  https://doi.org/10.1007/s10531-019-01818-4 CrossRefGoogle Scholar
  146. Warwick RM, Clarke KR (1995) New ‘biodiversity’ measures reveal a decrease in taxonomic distinctness with increasing stress. Mar Ecol Prog Ser 129:301–305CrossRefGoogle Scholar
  147. Werth S, Wagner HH, Gugerli F, Holderegger R, Csencsics D, Kalwij JM, Scheidegger C (2006) Quantifying dispersal and establishment limitation in a population of an epiphytic lichen. Ecology 87:2037–2046CrossRefPubMedGoogle Scholar
  148. Whittet R, Ellis CJ (2013) Critical tests for lichen indicators of woodland ecological continuity. Biol Conserv 168:19–23CrossRefGoogle Scholar
  149. Williams L, Ellis CJ (2018) Ecological constraints to ‘old-growth’ lichen indicators: niche specialism or dispersal limitation? Fungal Ecol 34:20–27CrossRefGoogle Scholar
  150. Wirth V, Hauck M, Schultz M (2013) Die Flechten Deutschlands. Ulmer, StuttgartGoogle Scholar
  151. Zahner R (1996) How much old growth is enough? In: Davis M (ed) Eastern old-growth forests: Prospects for rediscovery and recovery. Island Press, Washington, DC, pp 344–358Google Scholar
  152. Zemanová L, Trotsiuk V, Morrissey RC, Bače R, Mikoláš M, Svoboda M (2017) Old trees as a key source of epiphytic lichen persistence and spatial distribution in mountain Norway spruce forests. Biodivers Conserv 26:1943–1958CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Institute of BotanyThe Czech Academy of SciencesPrůhoniceCzech Republic
  2. 2.Faculty of Biological SciencesUniversity of South BohemiaČeské BudějoviceCzech Republic
  3. 3.Department of Genetics and Microbiology, Faculty of ScienceCharles University in PraguePraha 2Czech Republic
  4. 4.BIOCEV, Institute of MicrobiologyAcademy of Sciences of the Czech RepublicVestecCzech Republic
  5. 5.Department of Botany, Faculty of SciencesCharles University in PraguePraha 2Czech Republic
  6. 6.Department of Forest Ecology, Faculty of Forestry and Wood SciencesCzech University of Life Sciences PraguePraha 6Czech Republic
  7. 7.Department of Biogeochemical and Hydrological Cycles, Global Change Research InstituteThe Czech Academy of SciencesBrnoCzech Republic

Personalised recommendations