Advertisement

Biodiversity and Conservation

, Volume 28, Issue 12, pp 3299–3319 | Cite as

Delayed and immediate effects of habitat loss on the genetic diversity of the grassland plant Trifolium montanum

  • T. AavikEmail author
  • M. Thetloff
  • S. Träger
  • I. M. Hernández-Agramonte
  • I. Reinula
  • M. Pärtel
Original Paper

Abstract

Loss of the area and connectivity of natural and semi-natural habitats impose serious negative effects on all aspects of biodiversity. However, quantifying the effect of these pressures is difficult due to the time-lagged responses of biodiversity to landscape change. The aim of this study is to determine if genetic diversity of plant populations exhibits a delayed response to recent landscape change. Using microsatellite markers, we evaluated genetic diversity in 28 populations of a grassland plant Trifolium montanum in Estonian calcareous grasslands. We examined the response of genetic diversity to various current and historic landscape parameters assessed at two time points: (1) 2017, and (2) 1930, when the extent of grasslands in Estonia was at its maximum. Observed heterozygosity (HO) and inbreeding coefficients (FIS) were affected by historic grassland availability in the surroundings of the study populations (buffer radius of 2000 m). However, expected heterozygosity (HE) responded positively to current grassland area and to the availability of grasslands in the surrounding landscape. Allelic richness (AR) was positively related to current population size. We found evidence for recent genetic bottlenecks in half of the study populations, indicating that landscape change had a negative impact on population demography and consequent genetic diversity. Our findings suggest that regardless of major habitat loss, some measures of genetic diversity of perennial plant species may not be at equilibrium with landscape change. This calls for caution when interpreting observed patterns of plant genetic diversity and requires consideration of historic landscape context when recommending nature conservation strategies.

Keywords

Alvar grasslands Genetic extinction debt Habitat fragmentation Habitat loss Landscape genetics Time lag 

Notes

Acknowledgements

We acknowledge the support of the Estonian Research Council (IUT 20-29, PUT589, MOBJD427, TK131) and the European Regional Development Fund (Centre of Excellence EcolChange). We thank the two anonymous reviewers for valuable comments on the first version of the manuscript and Robert Szava-Kovats for language correction.

Supplementary material

10531_2019_1822_MOESM1_ESM.xlsx (16 kb)
Supplementary material 1 (XLSX 16 kb)
10531_2019_1822_MOESM2_ESM.xlsx (13 kb)
Supplementary material 2 (XLSX 13 kb)
10531_2019_1822_MOESM3_ESM.xlsx (18 kb)
Supplementary material 3 (XLSX 18 kb)

References

  1. Aavik T, Helm A (2018) Restoration of plant species and genetic diversity depends on landscape-scale dispersal. Restor Ecol 26:S92–S102CrossRefGoogle Scholar
  2. Aavik T, Holderegger R, Bolliger J (2014) The structural and functional connectivity of the grassland plant Lychnis flos-cuculi. Heredity 112:471–478CrossRefGoogle Scholar
  3. Aavik T, Talve T, Thetloff M, Uuemaa E, Oja T (2017) Genetic consequences of landscape change for rare endemic plants—A case study of Rhinanthus osiliensis. Biol Conserv 210:A125–135CrossRefGoogle Scholar
  4. Akaike H (1973) Information theory and an extension of the maximum likelihood principle. In: Petrov BN, Csaki F (eds) 2nd International symposium on information theory. Akademiai Kiado, Budapest, pp 267–281Google Scholar
  5. Allendorf FW, Luikart G, Aitken SN (2013) Conservation and the genetics of populations. Wiley-Blackwell, OxfordGoogle Scholar
  6. Anderson CD, Epperson BK, Fortin M-J, Holderegger R, James PMA, Rosenberg MS, Scribner KT, Spear S (2010) Considering spatial and temporal scale in landscape-genetic studies of gene flow. Mol Ecol 19:3565–3575CrossRefGoogle Scholar
  7. Auffret AG, Kimberley A, Plue J, Waldén E (2018) Super-regional land-use change and effects on the grassland specialist flora. Nat Commun 9:3464CrossRefGoogle Scholar
  8. Barton K (2018) MuMIn: Multi-Model Inference. R-package version 1.40.4Google Scholar
  9. Bengtsson J, Bullock JM, Egoh B, Everson C, Everson T, O’Connor T, O’Farrell PJ, Smith HG, Lindborg R (2019) Grasslands—more important for ecosystem services than you might think. Ecosphere 10:e02582CrossRefGoogle Scholar
  10. Bolliger J, Lander T, Balkenhol N (2014) Landscape genetics since 2003: status, challenges and future directions. Landsc Ecol 29:361–366CrossRefGoogle Scholar
  11. Caplins SA, Gilbert KJ, Ciotir C, Roland J, Matter SF, Keyghobadi N (2014) Landscape structure and the genetic effects of a population collapse. Proc R Soc B 281:20141798CrossRefGoogle Scholar
  12. Cornuet JM, Luikart G (1996) Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics 144:2001–2014Google Scholar
  13. Cotto O, Wessely J, Georges D, Klonner G, Schmid M, Dullinger S, Thuiller W, Guillaume F (2017) A dynamic eco-evolutionary model predicts slow response of alpine plants to climate warming. Nat Commun 8:15399CrossRefGoogle Scholar
  14. Cousins SAO (2009) Extinction debt in fragmented grasslands: paid or not? J Veg Sci 20:3–7CrossRefGoogle Scholar
  15. Dembicz I, Szczeparska L, Moysiyenko II, Wódkiewicz M (2018) High genetic diversity in fragmented Iris pumila L. populations in Ukrainian steppe enclaves. Basic Appl Ecol 28:37–47CrossRefGoogle Scholar
  16. Diaz-Forero I, Kuusemets V, Mänd M, Liivamägi A, Kaart T, Luig J (2013) Influence of local and landscape factors on bumblebees in semi-natural meadows: a multiple-scale study in a forested landscape. J Insect Conserv 17:113–125CrossRefGoogle Scholar
  17. DiLeo MF, Rico Y, Boehmer HJ, Wagner HH (2017) An ecological connectivity network maintains genetic diversity of a flagship wildflower, Pulsatilla vulgaris. Biol Conserv 212:A12–21CrossRefGoogle Scholar
  18. DiLeo MF, Holderegger R, Wagner HH (2018) Contemporary pollen flow as a multiscale process: evidence from the insect-pollinated herb, Pulsatilla vulgaris. J Ecol 106:2242–2255CrossRefGoogle Scholar
  19. Ehrlén J, Lehtilä K (2002) How perennial are perennial plants? Oikos 98:308–322CrossRefGoogle Scholar
  20. Epps CW, Keyghobadi N (2015) Landscape genetics in a changing world: disentangling historical and contemporary influences and inferring change. Mol Ecol 24:6021–6040CrossRefGoogle Scholar
  21. Essl F, Dullinger S, Rabitsch W, Hulme PE, Pyšek P, Wilson JRU, Richardson DM (2015) Historical legacies accumulate to shape future biodiversity in an era of rapid global change. Divers Distrib 21:534–547CrossRefGoogle Scholar
  22. Fischer M, Rounsevell M, Torre-Marin AR, Mader A, Church A, Elbakidze M, Elias VHT, Harrison PA, Hauck J, Martín-López B, Ring I, Sandström C, Sousa IP, Visconti P, Zimmermann NE (2018). IPBES (2018) Summary for policymakers of the regional assessment report on biodiversity and 24 ecosystem services for Europe and Central Asia of the Intergovernmental Science-Policy Platform on 25 Biodiversity and Ecosystem Services. IPBES secretariat, BonnGoogle Scholar
  23. Goudet J (1995) FSTAT (Version 1.2): a computer program to calculate F-statistics. J Hered 86:485–486CrossRefGoogle Scholar
  24. Haddad NM, Brudvig LA, Clobert J, Davies KF, Gonzalez A, Holt RD, Lovejoy TE, Sexton JO, Austin MP, Collins CD, Cook WM, Damschen EI, Ewers RM, Foster BL, Jenkins CN, King AJ, Laurance WF, Levey DJ, Margules CR, Melbourne BA, Nicholls AO, Orrock JL, SongD-X Townshend JR (2015) Habitat fragmentation and its lasting impact on Earth’s ecosystems. Sci Adv 1:e1500052CrossRefGoogle Scholar
  25. Hahn T, Kettle CJ, Ghazoul J, Frei ER, Matter P, Pluess AR (2012) Patterns of genetic variation across altitude in three plant species of semi-dry grasslands. PLoS ONE 7:e41608CrossRefGoogle Scholar
  26. Hahn T, Kettle CJ, Ghazoul J, Hennig EI, Pluess AR (2013) Landscape composition has limited impact on local genetic structure in Mountain Clover, Trifolium montanum L. J Hered 104:842–852CrossRefGoogle Scholar
  27. Halley JM, Monokrousos N, Mazaris AD, Vokou D (2017) Extinction debt in plant communities: where are we now? J Veg Sci 28:459–461CrossRefGoogle Scholar
  28. Helm A, Hanski I, Pärtel M (2006) Slow response of plant species richness to habitat loss and fragmentation. Ecol Lett 9:72–77Google Scholar
  29. Helm A, Oja T, Saar L, Takkis K, Talve T, Pärtel M (2009) Human influence lowers plant genetic diversity in communities with extinction debt. J Ecol 97:1329–1336CrossRefGoogle Scholar
  30. Helsen K, Meekers T, Vranckx G, Roldán-Ruiz I, Vandepitte K, Honnay O (2016) A direct assessment of realized seed and pollen flow within and between two isolated populations of the food-deceptive orchid Orchis mascula. Plant Biol 18:139–146CrossRefGoogle Scholar
  31. Holderegger R, Buehler D, Gugerli F, Manel S (2010) Landscape genetics of plants. Trends Plant Sci 15:675–683CrossRefGoogle Scholar
  32. Honnay O, Jacquemyn H (2007) Susceptibility of common and rare plant species to the genetic consequences of habitat fragmentation. Conserv Biol 21:823–831CrossRefGoogle Scholar
  33. Honnay O, Coart E, Butaye J, Adriaens D, Van Glabeke S, Roldan-Ruiz I (2006) Low impact of present and historical landscape configuration on the genetics of fragmented Anthyllis vulneraria populations. Biol Conserv 127:411–419CrossRefGoogle Scholar
  34. Honnay O, Bossuyt B, Jacquemyn H, Shimono A, Uchiyama K (2008) Can a seed bank maintain the genetic variation in the above ground plant population? Oikos 117:1–5CrossRefGoogle Scholar
  35. Jackson ND, Fahrig L (2016) Habitat amount, not habitat configuration, best predicts population genetic structure in fragmented landscapes. Landsc Ecol 31:951–968CrossRefGoogle Scholar
  36. Kamm U, Gugerli F, Rotach P, Edwards P, Holderegger R (2010) Open areas in a landscape enhance pollen-mediated gene flow of a tree species: evidence from northern Switzerland. Landsc Ecol 25:903–911CrossRefGoogle Scholar
  37. Klimeš L, Klimešová J (1999) CLO-PLA2: a database of clonal plants in central Europe. Plant Ecol 141:9–19CrossRefGoogle Scholar
  38. Krauss J, Bommarco R, Guardiola M, Heikkinen RK, Helm A, Kuussaari M, Lindborg R, Ockinger E, Pärtel M, Pino J, Pöyry J, Raatikainen KM, Sang A, Stefanescu C, Teder T, Zobel M, Steffan-Dewenter I (2010) Habitat fragmentation causes immediate and time-delayed biodiversity loss at different trophic levels. Ecol Lett 13:597–605CrossRefGoogle Scholar
  39. Kuussaari M, Bommarco R, Heikkinen RK, Helm A, Krauss J, Lindborg R, Ockinger E, Pärtel M, Pino J, Roda F, Stefanescu C, Teder T, Zobel M, Steffan-Dewenter I (2009) Extinction debt: a challenge for biodiversity conservation. Trends Ecol Evol 24:564–571CrossRefGoogle Scholar
  40. Laasimer R (1965) Eesti NSV Taimkate. Valgus, TallinnGoogle Scholar
  41. Lampinen J, Heikkinen RK, Manninen P, Ryttäri T, Kuussaari M (2018) Importance of local habitat conditions and past and present habitat connectivity for the species richness of grassland plants and butterflies in power line clearings. Biodivers Conserv 27:217–233CrossRefGoogle Scholar
  42. Leimu R, Mutikainen P, Koricheva J, Fischer M (2006) How general are positive relationships between plant population size, fitness and genetic variation? J Ecol 94:942–952CrossRefGoogle Scholar
  43. Matter P, Määttänen K, Kettle CJ, Ghazoul J, Pluess AR (2012) Eleven microsatellite markers for the mountain clover Trifolium montanum (Fabaceae). Am J Bot 99:e447–e449CrossRefGoogle Scholar
  44. Matter P, Kettle CJ, Ghazoul J, Hahn T, Pluess AR (2013a) Evaluating contemporary pollen dispersal in two common grassland species Ranunculus bulbosus L. (Ranunculaceae) and Trifolium montanum L. (Fabaceae) using an experimental approach. Plant Biol 15:583–592CrossRefGoogle Scholar
  45. Matter P, Kettle CJ, Ghazoul J, Pluess AR (2013b) Extensive contemporary pollen-mediated gene flow in two herb species, Ranunculus bulbosus and Trifolium montanum, along an altitudinal gradient in a meadow landscape. Ann Bot 111:611–621CrossRefGoogle Scholar
  46. Mijangos JL, Pacioni C, Spencer PBS, Craig MD (2015) Contribution of genetics to ecological restoration. Mol Ecol 24:22–37CrossRefGoogle Scholar
  47. Münzbergová Z, Cousins SAO, Herben T, Plačková I, Mildén M, Ehrlén J (2013) Historical habitat connectivity affects current genetic structure in a grassland species. Plant Biol 15:195–202CrossRefGoogle Scholar
  48. Murphy MA, Evans SJ, Cushman AS, Storfer A (2009) Representing genetic variation as continuous surfaces: an approach for identifying spatial dependency in landscape genetic studies. Ecography 31:685–697CrossRefGoogle Scholar
  49. Nei M (1973) Analysis of gene diversity in subdivided populations. Proc Natl Acad Sci USA 70:3321–3323CrossRefGoogle Scholar
  50. Otsu C, Iijima H, Nagaike T, Hoshino Y (2017) Evidence of extinction debt through the survival and colonization of each species in semi-natural grasslands. J Veg Sci 28:464–474CrossRefGoogle Scholar
  51. Otto R, Garzón-Machado V, del Arco M, Fernández-Lugo S, de Nascimento L, Oromí P, Báez M, Ibáñez M, Alonso M, Fernández-Palacios JM (2017) Unpaid extinction debts for endemic plants and invertebrates as a legacy of habitat loss on oceanic islands. Divers Distrib 23:1031–1041CrossRefGoogle Scholar
  52. Pärtel M, Kalamees R, Zobel M, Rosén E (1999a) Alvar grasslands in estonia: variation in species composition and community structure. J Veg Sci 10:561–570CrossRefGoogle Scholar
  53. Pärtel M, Mändla R, Zobel M (1999b) Landscape history of a calcareous (alvar) grassland in Hanila, western Estonia, during the last three hundred years. Landsc Ecol 14:187–196CrossRefGoogle Scholar
  54. Peakall R, Smouse P (2012) GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research—an update. Bioinformatics 28:2537–2539CrossRefGoogle Scholar
  55. Pettersson MW, Sjödin E (2000) Effects of experimental plant density reductions on plant choice and foraging behaviour of bees (Hymenoptera: apoidea). Acta Agric Scand Sect B 50(1):40–46Google Scholar
  56. Piry S, Luikart G, Cornuet J-M (1999) Computer note. BOTTLENECK: a computer program for detecting recent reductions in the effective size using allele frequency data. J Hered 90:502–503CrossRefGoogle Scholar
  57. Plue J, Vandepitte K, Honnay O, Cousins SAO (2017) Does the seed bank contribute to the build-up of a genetic extinction debt in the grassland perennial Campanula rotundifolia? Ann Bot 120:373–385CrossRefGoogle Scholar
  58. Plue J, Kimberley A, Slotte T (2018) Interspecific variation in ploidy as a key plant trait outlining local extinction risks and community patterns in fragmented landscapes. Funct Ecol 32:2095–2106CrossRefGoogle Scholar
  59. Plue J, Aavik T, Cousins SAO (2019) Grazing networks promote plant functional connectivity among isolated grassland communities. Divers Distrib 25:102–115CrossRefGoogle Scholar
  60. Prangel E (2017) Ökosüsteemi hüved avatud ja kinnikasvavatel loopealsetel. Master thesis, University of Tartu, TartuGoogle Scholar
  61. Prevedello J, Vieira M (2010) Does the type of matrix matter? A quantitative review of the evidence. Biodivers Conserv 19:1205–1223CrossRefGoogle Scholar
  62. R-Core-Team. (2013) R: A language and Environment for Statistical Computing. In: Vienna, Austria, http://www.R-project.org/. R foundation for statistical computing
  63. Reisch C, Schmidkonz S, Meier K, Schöpplein Q, Meyer C, Hums C, Putz C, Schmid C (2017) Genetic diversity of calcareous grassland plant species depends on historical landscape configuration. BMC Ecol 17:19CrossRefGoogle Scholar
  64. Sang A, Teder T, Helm A, Pärtel M (2010) Indirect evidence for an extinction debt of grassland butterflies half century after habitat loss. Biol Conserv 143:1405–1413CrossRefGoogle Scholar
  65. Savage J, Vellend M (2015) Elevational shifts, biotic homogenization and time lags in vegetation change during 40 years of climate warming. Ecography 38:546–555CrossRefGoogle Scholar
  66. Schleuning M, Matthies D (2009) Habitat change and plant demography: assessing the extinction risk of a formerly common grassland perennial. Conserv Biol 23:174–183CrossRefGoogle Scholar
  67. Schleuning M, Niggemann M, Becker U, Matthies D (2009) Negative effects of habitat degradation and fragmentation on the declining grassland plant Trifolium montanum. Basic Appl Ecol 10:61–69CrossRefGoogle Scholar
  68. Takkis K, Pärtel M, Saar L, Helm A (2013) Extinction debt in a common grassland species: immediate and delayed responses of plant and population fitness. Plant Ecol 214:953–963CrossRefGoogle Scholar
  69. Tamm A, Kull K, Sammul M (2001) Classifying clonal growth forms based on vegetative mobility and ramet longevity: a whole community analysis. Evol Ecol 15:383–401CrossRefGoogle Scholar
  70. Thompson K, Bakker JP, Bekker RM (1997) Soil seed banks of North West Europe: Methodology, density and longevity. Cambridge University Press, CambridgeGoogle Scholar
  71. Tilman D, May RM, Lehman CL, Novak MA (1994) Habitat destruction and the extinction debt. Nature 371:65–66CrossRefGoogle Scholar
  72. Tilman D, Reich PB, Knops JMH (2006) Biodiversity and ecosystem stability in a decade-long grassland experiment. Nature 441:629–632CrossRefGoogle Scholar
  73. Vetemäe M (2015) Mägiristiku (Trifolium montanum L.) populatsioonide struktuur ja paljunemisedukus erinevalt majandatud Lõuna-Eesti populatsioonides. Master thesis, University of Life Sciences, TartuGoogle Scholar
  74. WallisDeVries MF, Poschlod P, Willems JH (2002) Challenges for the conservation of calcareous grasslands in northwestern Europe: integrating the requirements of flora and fauna. Biol Conserv 104:265–273CrossRefGoogle Scholar
  75. Waples RS (2015) Testing for Hardy-Weinberg proportions: have we lost the plot? J Hered 106:1–19CrossRefGoogle Scholar
  76. Wesche K, Krause B, Culmsee H, Leuschner C (2012) Fifty years of change in Central European grassland vegetation: large losses in species richness and animal-pollinated plants. Biol Conserv 150:76–85CrossRefGoogle Scholar
  77. Wilson JB, Peet RK, Dengler J, Pärtel M (2012) Plant species richness: the world records. J Veg Sci 23:796–802CrossRefGoogle Scholar
  78. Wilson MC, Chen X-Y, Corlett RT, Didham RK, Ding P, Holt RD, Holyoak M, Hu G, Hughes AC, Jiang L, Laurance WF, Liu J, Pimm SL, Robinson SK, Russo SE, Si X, Wilcove DS, Wu J, Yu M (2016) Habitat fragmentation and biodiversity conservation: key findings and future challenges. Landsc Ecol 31:219–227CrossRefGoogle Scholar
  79. Wódkiewicz M, Dembicz I, Moysiyenko II (2016) The value of small habitat islands for the conservation of genetic variability in a steppe grass species. Acta Oecol 76:22–30CrossRefGoogle Scholar
  80. Wright S (1965) The interpretation of population structure by F-statistics with special regard to systems of mating. Evolution 19:395–420CrossRefGoogle Scholar
  81. Young A, Boyle T, Brown T (1996) The population genetic consequences of habitat fragmentation for plants. Trends Ecol Evol 11:413–418CrossRefGoogle Scholar
  82. Zurbuchen A, Bachofen C, Müller A, Hein S, Dorn S (2010a) Are landscape structures insurmountable barriers for foraging bees? A mark-recapture study with two solitary pollen specialist species. Apidologie 41:497–508CrossRefGoogle Scholar
  83. Zurbuchen A, Landert L, Klaiber J, Müller A, Hein S, Dorn S (2010b) Maximum foraging ranges in solitary bees: only few individuals have the capability to cover long foraging distances. Biol Conserv 143:669–676CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of Botany, Institute of Ecology and Earth SciencesUniversity of TartuTartuEstonia

Personalised recommendations