Advertisement

Biodiversity and Conservation

, Volume 28, Issue 12, pp 3221–3237 | Cite as

Large scale burning for a threatened ungulate in a biodiversity hotspot is detrimental for grasshoppers (Orthoptera: Caelifera)

  • Dhaneesh BhaskarEmail author
  • P. S. Easa
  • K. A. Sreejith
  • Josip Skejo
  • Axel Hochkirch
Original Paper

Abstract

Habitat management strategies across the globe are often focusing on flagship species, such as large threatened mammals. This is also true for most protected areas of India, where large mammals such as the Tiger or Asian Elephant represent focal species of conservation management, although a shift towards other species groups can be observed in recent times. Prescribed burning is a controversially debated method to manage open habitat types. This method is practised as a tool to manage the habitat of the endangered Nilgiri tahr, Nilgiritragus hylocrius (an endemic goat) at a large scale (50 ha grids) in Eravikulam National Park of the Western Ghats (Kerala, India). However, the impact of prescribed burning on other biota of this unique environment in a global biodiversity hotspot has not been studied. We compared the impact of large-scale prescribed burning on grasshopper abundances in Eravikulam National Park with small-scale burning in Parambikulam Tiger Reserve from 2015 to 2018, to assess the impact of the different fire management practices of these reserves on this species-rich insect group. We observed a negative response of grasshoppers to burning of larger contiguous areas in terms of their recovery after fire events, whereas burning small patches in a mosaic pattern facilitated rapid recovery of grasshopper communities. Our results suggest that burning management can be optimized to benefit both, the flagship vertebrate species as well as species-rich invertebrate communities.

Keywords

Western Ghats Habitat heterogeneity Fire extent Grasshopper abundance Grassland management Insect conservation Prescribed burning 

Notes

Acknowledgements

We are thankful to the Director, Sajeev TV, lab mates (ecology and entomology) and all other scientific community members of the Kerala Forest Research Institute (KFRI) for their support. The financial support of the Orthoptera Species File Grant made the visit to European museums possible. We are grateful to Maria Marta Cigliano, Holger Braun of OSF and Judith Marshall, George Beccaloni of NHM London and Mercedes Paris of MNCN Madrid for their whole hearted support during the study. We acknowledge the Kerala Forest and Wildlife Department (PKMTR and ENP); Wildlife wardens (Anjan Kumar IFS and Prasad G) Range Forest Officers (Manoj K, Johnson CK, Rajan V, Jayaprakash K, Sanjayan MP and Sandeep S) our field assistants (Bagyaraj, Sreenivasan, Karupswami and Kapilan) as well as Mr. Shiju (driver KFRI) for safely driving us through the forests.

Supplementary material

10531_2019_1816_MOESM1_ESM.xlsx (22 kb)
Supplementary material 1 (XLSX 22 kb)

References

  1. Alempath M, Rice C (2008) Nilgiritragus hylocrius. IUCN Red List Threatened Species 2008:e.T9917A13026736.  https://doi.org/10.2305/IUCN.UK.2008.RLTS.T9917A13026736.en CrossRefGoogle Scholar
  2. Alignan JF, Debras JF, Dutoit T (2018) Orthoptera prove good indicators of grassland rehabilitation success in the first French Natural Asset Reserve. J Nat Conserv 44:1–11.  https://doi.org/10.1016/j.jnc.2018.04.002 CrossRefGoogle Scholar
  3. Anderson AN, Ludwig JA, Lowe LM, Rentz DCF (2001) Grasshopper biodiversity and bioindicators in Australian tropical savannas: responses to disturbance in Kakadu National Park. Austral Ecol 26:213–222.  https://doi.org/10.1046/j.1442-9993.2001.01106.x CrossRefGoogle Scholar
  4. Belovsky GE (2000) Do grasshoppers diminish grassland productivity? A new perspective for control based on conservation. In: Lockwood JA, Latchininsky AV, Sergeev M (eds) Grasshoppers and grassland health. Kluwer, Dordrecht, pp 7–29CrossRefGoogle Scholar
  5. Belovsky GE, Slade JB (2017) Grasshoppers affect grassland ecosystem functioning: spatial and temporal variation. Basic Appl Ecol 26:24–34.  https://doi.org/10.1016/j.baae.2017.09.003 CrossRefGoogle Scholar
  6. Bock CD, Bock JH (1991) Response of grasshoppers (Orthoptera: Acrididae) to wildfire in a southeastern Arizona grassland. Am Midl Nat 125:162–167CrossRefGoogle Scholar
  7. Bolivar I (1902) Les Orthoptères de St. Joseph’s College, à Trichinopoly (Sud de l’Inde); 3me partie. Ann Soc entomol Fr 70:580–635Google Scholar
  8. Bolívar I (1900) Les Orthoptères de St. Joseph’s College, à Trichinopoly (Sud de l’Inde); 2ème partie. Ann Soc entomol Fr 68:761–810Google Scholar
  9. Bolívar C (1914) Eumastácinos nuevos ó poco conocidos. Trab Mus Cienc Nat Madrid (Ser Zool) 16:3–46Google Scholar
  10. Bolívar C (1930) Monografía de los Eumastácidos. Trab Mus Cienc Nat Madrid (Ser Zool) 46:1–380Google Scholar
  11. Bowen-Jones E, Entwistle A (2002) Identifying appropriate flagship species: the importance of culture and local contexts. Oryx 36:189–195.  https://doi.org/10.1017/S0030605302000261 CrossRefGoogle Scholar
  12. Bröder L, Tatin L, Danielczak A, Seibel T, Hochkirch A (2018) Intensive grazing as a threat in protected areas: the need for adaptive management to protect the Critically Endangered Crau plain grasshopper Prionotropis rhodanica. Oryx.  https://doi.org/10.1017/S0030605318000170 CrossRefGoogle Scholar
  13. Chambers BQ (1998) Grasshopper response to a 40-year experimental burning and mowing regime, with recommendations for invertebrate conservation management. Biodivers Conserv 7:985–1012CrossRefGoogle Scholar
  14. Champion HG, Seth SK (1968) A revised survey of forest types of India. Govt. of India Press, New DelhiGoogle Scholar
  15. Chaneton EJ, Facelli JM (1991) Disturbance effects on plant community diversity: spatial scales and dominance heirarchies. Vegetatio 93:141–155CrossRefGoogle Scholar
  16. Chappell MA, Whitman DW (1990) Grasshopper thermoregulation. In: Joern A (ed) Chapman RF. Biology of Grasshoppers, Wiley, pp 143–172Google Scholar
  17. Chopard L (1969) Orthoptera, Vol 2 Grylloidea. In: Seymour Sewell RB (ed) The Fauna of India and the adjacent countries. Zoological Survey of India, CalcuttaGoogle Scholar
  18. Cigliano MM, Braun H, Eades DC, Otte D (2018) Orthoptera species file version 5.0/5.0. http://Orthoptera.SpeciesFile.org. Accessed 01 January 2018
  19. Collins SL (1989) Experimental analysis of patch dynamics and community heterogeneity in tallgrass prairie. Vegetatio 85:57–66CrossRefGoogle Scholar
  20. Collins SL (1992) Fire frequency and community heterogeneity in tallgrass prairie vegetation. Ecology 73:2001–2006CrossRefGoogle Scholar
  21. Collins SL, Knapp AK, Briggs JM, Blair JM, Steinauer EM (1998) Modulation of diversity by grazing and mowing in native tallgrass prairie. Science 280:745–747.  https://doi.org/10.1126/science.280.5364.745 CrossRefPubMedGoogle Scholar
  22. Davidar ERC (1978) Distribution and status of the Nilgiri tahr (Hemitragus hylocrius) 1975–1978. J Bombay Nat Hist Soc 75:815–844Google Scholar
  23. Easa PS, Alempath M, Zacharias J, Daniels RJ (2010) Recovery plan for the Nilgiri tahr (Nilgiritragus hylocrius). Asia Biodiversity Conservation Trust and Care Earth Trust, ThrissurGoogle Scholar
  24. Evans EW (1984) Fire as a natural disturbance to grasshopper assemblages of tallgrass prairie. Oikos 43:9–16CrossRefGoogle Scholar
  25. Evans EW (1988) Community dynamics of prairie grasshoppers subjected to periodic fire: predictable trajectories or random walks in time. Oikos 52:283–292CrossRefGoogle Scholar
  26. Ferrando CPR, Podgaiski LR, Costa MKM, Mendonca MDS Jr (2016) Taxonomic and functional resilience of grasshoppers (Orthoptera, Caelifera) to fire in south Brazilian grasslands. Neotrop Entomol 45:374–381CrossRefPubMedGoogle Scholar
  27. Fredericksen NJ, Fredericksen TS (2002) Terrestrial wildlife responses to logging and fire in a Bolivian tropical humid forest. Biodivers Conserv 11:27–38CrossRefGoogle Scholar
  28. Gardiner T, Dover JJ (2005) Is microclimate important for Orthoptera in open landscapes? J Insect Conserv 12:705–709.  https://doi.org/10.1007/s10841-007-9104-7 CrossRefGoogle Scholar
  29. Gardiner T, Gardiner M, Hill J (2005) The effect of pasture improvement and burning on Orthoptera populations of Culm grasslands in northwest Devon, UK. J Orthoptera Res 14:153–159CrossRefGoogle Scholar
  30. Gibson DJ (1988) Regeneration and fluctuation of tallgrass prairie vegetation in response to burning frequency. Bull Torrey Bot 115:1–12CrossRefGoogle Scholar
  31. Henle K, Amler K, Biedermann R, Kaule G, Poschlod P (1999) Bedeutung und Funktion von Arten und Lebensgemeinschaften in der Planung. In: Amler K, Bahl A, Henle K, Kaule G, Poschlod P, Settele J (eds) Populationsbiologie in der Naturschutzpraxis. Ulmer, Stuttgart, pp 17–23Google Scholar
  32. Henry GM (1937) A new genus and species of Acridian from South India and Ceylon (Orthoptera). Proc R Ent Soc Lond (B) 6:197–200Google Scholar
  33. Henry GM (1940) New and little known South Indian Acrididae (Orthoptera). Trans R Entomol Soc Lond 90:497–540CrossRefGoogle Scholar
  34. Hochkirch A (2016) The insect crisis we can’t ignore. Nature 359:141CrossRefGoogle Scholar
  35. Hochkirch A, Adorf F (2007) Effects of prescribed burning and wildfires on Orthoptera in Central European peat bogs. Environ Conserv 34:225–235CrossRefGoogle Scholar
  36. Hochkirch A, Nieto A, García Criado M et al (2016) European red list of grasshoppers, crickets and bush-crickets. Publications Office of the European Union, LuxembourgGoogle Scholar
  37. Huntzinger M (2003) Effects of fire management practices on butterfly diversity in the forested western United States. Biol Conserv 113:1–12CrossRefGoogle Scholar
  38. Ingrisch S (1983) Zum Einfluß der Feuchte auf die Schlupfrate und Entwicklungsdauer der Eier mitteleuropäischer Feldheuschrecken. Deutsche Entomologische Zeitschrift 30:1–15CrossRefGoogle Scholar
  39. Ingrisch S, Köhler G (1998) Die Heuschrecken Mitteleuropas. Westarp Sciences, MagdeburgGoogle Scholar
  40. Joern A (1979) Feeding patterns in grasshoppers (Orthoptera: Acrididae): factors influencing diet specialization. Oecologia 38:325–347.  https://doi.org/10.1007/BF00345192 CrossRefPubMedGoogle Scholar
  41. Joern A (1982) Vegetation structure and microhabitat selection in grasshoppers (Orthoptera: Acrididae). Southwest Nat 27:197–209.  https://doi.org/10.2307/3671144 CrossRefGoogle Scholar
  42. Joern A (2005) Disturbance by fire frequency and bison grazing modulate grasshopper assemblages in tallgrass prairie. Ecology 86:861–873CrossRefGoogle Scholar
  43. Jonas LJ, Joern A (2007) Grasshopper (Orthoptera: Acrididae) communities respond to Wre, bison grazing and weather in North American tallgrass prairie: a long-term study. Oecologia 153:699–711.  https://doi.org/10.1007/s00442-007-0761-8 CrossRefPubMedGoogle Scholar
  44. Keeley JE, Fotheringham CJ, Baer-Keeley M (2005) Factors affecting plant diversity during post-fire recovery and succession of mediterranean-climate shrublands in California, USA. Divers Distrib 11:525–537CrossRefGoogle Scholar
  45. Kirby WF (1914) The fauna of British India including Ceylon and Burma, Orthoptera (Acrididae). Taylor and Francis, LondonCrossRefGoogle Scholar
  46. Law BS, Dickman CR (1998) The use of habitat mosaics by terrestrial vertebrate fauna: implications for conservation and management. Biodivers Conserv 7:323–333CrossRefGoogle Scholar
  47. Matenaar D, Bröder L, Bazelet CS, Hochkirch A (2014) Persisting in a windy habitat: population ecology and behavioural adaptations of two endemic grasshopper species in the Cape Region (South Africa). J Insect Conserv 18:447–456CrossRefGoogle Scholar
  48. McCullough DG, Werner RA, Neumann D (1998) Fire and insects in northern and boreal forest ecosystems of North America. Annu Rev Entomol 43:107–127CrossRefPubMedGoogle Scholar
  49. Metsalu T, Vilo J (2015) Clustvis: a web tool for visualizing clustering of multivariate data using Principal Component Analysis and heatmap. Nucleic Acids Res 43(W1):W566–W570.  https://doi.org/10.1093/nar/gkv468 CrossRefPubMedPubMedCentralGoogle Scholar
  50. Myers N, Mittermeier RA, Mittermeier CG, da Fonseca GAB, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–857CrossRefPubMedGoogle Scholar
  51. Niemeyer T, Fottner S, Mohamed A, Sieber M, Härdtle W (2004) Einfluss des kontrollierten Brennens auf die Nährstoffdynamik von Sand- und Moorheiden. NNA-Berichte 17:65–79Google Scholar
  52. Odum EP, Connell CE, Davenport LB (1962) Population energy flow of three primary consumer components of old-field ecosystems. Ecology 43:88–96.  https://doi.org/10.2307/1932043 CrossRefGoogle Scholar
  53. Parr CL, Brockett BH (1999) Patch-mosaic burning: a new paradigm for savanna fire management in protected areas? Koedoe 42:117–130CrossRefGoogle Scholar
  54. Pons P, Lambert B, Rigolot E, Prodon R (2003) The effects of grassland management using fire on habitat occupancy and conservation of birds in a mosaic landscape. Biodivers Conserv 12:1843–1860CrossRefGoogle Scholar
  55. R Core Team (2018) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. http://www.R-project.org/
  56. Rice LA (1932) The effect of fire on prairie animal communities. Ecology 13:392–401CrossRefGoogle Scholar
  57. Schwilk DW, Keeley JE, Bond WJ (1997) The Intermediate disturbance hypothesis does not explain fire and diversity pattern in fynbos. Plant Ecol 132:77–84CrossRefGoogle Scholar
  58. Shriver WG, Vickery PD (2001) Response of breeding Florida grasshopper and Bachman’s sparrows to winter prescribed burning. J Wildlife Manage 65:470–475CrossRefGoogle Scholar
  59. Swengel AB (1996) Effects of fire and hay management on abundance of prairie butterflies. Biol Conserv 76:73–85CrossRefGoogle Scholar
  60. Swengel AB (2001) A literature review of insect responses to fire, compared to other conservation managements of open habitat. Biodivers Conserv 10:1141–1169CrossRefGoogle Scholar
  61. Tews J, Brose U, Grimm V, Tielbörger K, Wichmann MC, Schwager M, Jeltsch F (2004) Animal species diversity driven by habitat heterogeneity/diversity: the importance of keystone structures. J Biogeogr 31:79–92CrossRefGoogle Scholar
  62. Tscharntke T, Steffan-Dewenter I, Kruess A, Thies C (2002) Characteristics of insect populations on habitat fragments: a mini review. Ecol Res 17:229–239CrossRefGoogle Scholar
  63. Uvarov BP (1929) Acrididen (Orthoptera) aus Süd-Indien. Rev Suisse Zool 36:533–563CrossRefGoogle Scholar
  64. Uvarov BP (1977) Grasshoppers and Locusts—a handbook of general Acridology, vol 2. Cambridge University Press, CambridgeGoogle Scholar
  65. Warren SD, Scifres CJ, Teel PD (1987) Response of grassland arthropods to burning: a review. Agric Ecosyst Environ 19:105–130.  https://doi.org/10.1016/0167-8809(87)90012-0 CrossRefGoogle Scholar
  66. Weiss N, Zucchi H, Hochkirch A (2013) The effects of grassland management and aspect on Orthoptera diversity and abundance: site conditions are as important as management. Biodivers Conserv 22:2167–2178.  https://doi.org/10.1007/s10531-012-0398-8 CrossRefGoogle Scholar
  67. Welti EAR, Qiu F, Tetreault HM, Ungerer M, Blair J, Joern A (2019) Data from: fire, grazing, and climate shape plant-grasshopper interactions in a tallgrass prairie. Funct Ecol.  https://doi.org/10.1111/1365-2435.13272 CrossRefGoogle Scholar
  68. Westwood JO (1839) On Hymenotes, a genus of exotic orthopterous insects. Ann Mag Nat Hist 3:489–495Google Scholar
  69. Weyer J, Weinberger J, Hochkirch A (2012) Mobility and microhabitat utilization in a flightless wetland grasshopper, Chorthippus montanus (Charpentier, 1825). J Insect Conserv 16:379–390.  https://doi.org/10.1007/s10841-011-9423-6 CrossRefGoogle Scholar
  70. Whelan RJ (1995) The ecology of fire. Cambridge University Press, CambridgeGoogle Scholar
  71. Williams PH, Burgess ND, Rahbek C (2000) Flagship species, ecological complementarity and conserving the diversity of mammals and birds in sub-Saharan Africa. Anim Conserv Forum 3:249–260CrossRefGoogle Scholar
  72. Williams BK, Nichols JD, Conroy MJ (2002) Analysis and management of animal populations. Academic Press, San DiegoGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Kerala Forest Research InstitutePeechi, ThrissurIndia
  2. 2.University of CalicutThenhipalamIndia
  3. 3.IUCN SSC Grasshopper Specialist GroupGlandSwitzerland
  4. 4.Division of Zoology, Department of Biology, Evolution LabUniversity of ZagrebZagrebCroatia
  5. 5.Department of BiogeographyTrier UniversityTrierGermany

Personalised recommendations