Urban rain-fed lakes: macro-invertebrate assemblages associated with Egeria najas as indicators of biological integrity in wetlands of Corrientes Province (Argentina)

  • Luciana Irene GallardoEmail author
  • Juan Manuel Coronel
  • Alicia Susana Guadalupe Poi
Original Paper


In northeast Corrientes Province, there are more than 50,000 semi-rounded shallow rain-fed lakes. Several lakes have been disturbed mainly because urbanization causes eutrophication due to the illegal discharge of wastewater. We compared 22 metrics based on the structural attributes of macro-invertebrates associated with Egeria najas across seasons between five lakes with different human disturbance levels. Sixty-six samples of E. najas and associated invertebrates were collected seasonally using a net with an area of 962 cm2. A total of 17,737 macro-invertebrates of eight major groups, 35 families and 30 genera were recorded. The total macro-invertebrate abundance (number of individuals per plant dry weigh) and the family richness were significantly higher in less disturbed lakes than those under human disturbance, but the differences between seasons were not significant. Non-metric multidimensional scaling analysis differentiated the macro-invertebrate abundances between the more and less disturbed lakes; instead, the diversity indices were not useful for measuring the changes in the studied lakes. Besides, total number of taxa, number of EOT (Ephemeroptera, Odonata, Trichoptera) taxa, abundance and proportion of Trichoptera and abundance of Chironomidae reflected significant differences between the more and less disturbed lakes. Our results suggest that seven invertebrate metrics respond to urbanization, and they could be used to assess biological integrity of the studied lakes in complement of chemical monitoring of water quality. Management efforts should focus on the maintenance of macrophyte stands that provide high invertebrate diversity, which serve as food for a wide variety of fish.


Urbanization Human disturbances Invertebrate metrics Aquatic plants Shallow lakes 



This work was supported by the Project “Analysis of ecological condition of peri-urban ponds (Corrientes, Argentina)” PI 2011Q001 SGCYT of the National University of Northeast (UNNE), Corrientes, Argentina. The authors thank the technical assistants of the Centro de Ecología Aplicada del Litoral (CECOAL) for field assistance and for water chemical analysis.


  1. APHA, Awwa, WEF (American Public Health Association, American Water Works Association, Water Environment Federation) (1975) Standard methods for the examination of water and wastewater, 14th edn. APHA, AWWA, WEF, Washington DCGoogle Scholar
  2. Arimoro FO, Muller WJ (2010) Mayfly (Insecta: Ephemeroptera) community structure as an indicator of the ecological status of a stream in the Niger Delta area of Nigeria. Environ Monit Asses 166:581–594CrossRefGoogle Scholar
  3. Awal S, Svozil D (2010) Macroinvertebrates species diversity as a potential universal measure of wetland ecosystem integrity in constructed wetlands in South East Melbourne. Aquat Ecosyst Health Manag 13:472–479CrossRefGoogle Scholar
  4. Bailey RC, Norris RH, Reynoldson TB (2001) Taxonomic resolution of benthic macroinvertebrate communities in bioassessments. J North Am Benthol Soc 20:280–286CrossRefGoogle Scholar
  5. Batzer DP, Boix D (eds) (2016) Invertebrates in freshwater wetlands. An international perspective on their ecology. Springer International Publishing, BaselGoogle Scholar
  6. Bonetto AA, Neiff JJ, Poi De Neiff A, Varela ME, Corrales MA, Zalocar Y (1978) Estudios limnológicos en la cuenca del Riachuelo.III. Laguna La Brava. Ecosur 5:57–84Google Scholar
  7. Bouchard RW (2004) Guide to aquatic invertebrates of the upper Midwest. Identification manual for students, citizen monitors and aquatic resource professionals. University of Minnesota, St. PaulGoogle Scholar
  8. Bruniard ED (1999) Los regímenes hídricos de las formaciones vegetales. Aportes para un modelo fotoclimático mundial. Editorial Universitaria del Nordeste (Eudene), Resistencia, ChacoGoogle Scholar
  9. Carnevali RP, Collins P, Poi ASG (2016) Reproductive pattern of the freshwater prawn Pseudopalaemon bouvieri (Crustacea, Palaemonidae) from hypo-osmotic shallow lakes of Corrientes (Argentina). Stud Neotrop Fauna E51:159–168. CrossRefGoogle Scholar
  10. Clarke KR (1993) Non-parametric multivariate analysis of changes in community structure. Aust J Ecol 18:117–143CrossRefGoogle Scholar
  11. Damborsky MP, Poi ASG (2015) Aplicación de índices bióticos utilizando macroinvertebrados para el monitoreo de calidad del agua del Río Negro, Chaco, Argentina. Facena 31:41–52CrossRefGoogle Scholar
  12. Di Rienzo JA, Casanoves F, Balzarini MG, Gonzalez LM, Tablada C, Robledo W (2013) InfoStat. Grupo InfoStat, FCA. Universidad Nacional de Córdoba, Argentina.
  13. Domínguez E, Fernández HR (2009) Macroinvertebrados bentónicos sudamericanos. Sistemática y biología. Fundación Miguel Lillio, TucumánGoogle Scholar
  14. Fernández HR, Romero F, Vece MB, Manzo V, Nieto C, Orce M (2002) Evaluación de tres índices bióticos en un río subtropical de montaña (Tucumán- Argentina). Limnetica 2:1–13Google Scholar
  15. Gallardo LI, Carnevali RP, Porcel EA, Poi ASG (2017) Does the effect of aquatic plant types on invertebrate assemblages change across seasons in a subtropical wetland? Limnetica 36:87–98. Google Scholar
  16. Gleason R, Eullis N, Hubbard D, Duffy W (2003) Effects of sediment load on emergence of aquatic invertebrates and plants from wetland soil egg and seed banks. Wetlands 22:26–34CrossRefGoogle Scholar
  17. Gotelli NJ, Chao A (2013) Measuring and estimating species richness, species diversity, and biotic similarity from sampling data. In: Levin SA (ed) Encyclopedia of Biodiversity, 2nd edn. Academic Press, Waltham, MA, pp 195–211CrossRefGoogle Scholar
  18. Hammer Ø, Harper DAT, Ryan PD (2001) PAST: Paleontological statistics software package for education and data analysis, Palaeontología electrónica.
  19. Hunter M (2002) Landscape structure, habitat fragmentation, and the ecology of insects. Agric For Entomol 4:159–166CrossRefGoogle Scholar
  20. Jacobsen D, Cressa C, Mathooko JM, Dudgeon D (2008) Macroinvertebrates: composition, life histories and production. In: Dudgeon D (ed) Tropical streams ecology. Elsevier, Amsterdam, pp 65–105CrossRefGoogle Scholar
  21. Jost L (2006) Entropy and diversity. Oikos 113:363–375CrossRefGoogle Scholar
  22. Karr JR, Dudley DR (1981) Ecological perspective on water quality goals. Environ Manage 5:55–68CrossRefGoogle Scholar
  23. Kashian DR, Burton TM (2000) A comparison of macroinvertebrates of two Great Lakes coastal wetlands: testing potential metrics for an index of ecological integrity. J Great Lakes Res 26:460–481CrossRefGoogle Scholar
  24. Kerans BL, Karr JR (1994) A benthic index of biotic integrity (B-IBI) for rivers of the Tennessee Valley. Ecol Appl 4:768–785CrossRefGoogle Scholar
  25. King RS, Nunnery KT, Richardson CJ (2000) Macroinvertebrate assemblage response to highway crossings in forested wetlands: implications for biological assessment. Wetl Ecol Manag 8:243–256CrossRefGoogle Scholar
  26. Lunde KB, Resh VH (2012) Development and validation of a macroinvertebrate index of biotic integrity (IBI) for assessing urban impacts to Northern California freshwater wetlands. Environ Monit Assess 184:3653–3674. CrossRefPubMedGoogle Scholar
  27. Maltchik L, Rolon AS, Stenert C (2010) Aquatic macrophyte and macroinvertebrate diversity and conservation in wetlands of the Sinos River basin. Braz J Biol 70:1179–1184CrossRefPubMedGoogle Scholar
  28. McDonnell MJ, Pickett STA (1990) Ecosystem structure and function along urban–rural gradients: an unexploited opportunity for ecology. Ecology 71:1232–1237CrossRefGoogle Scholar
  29. McKinney ML (2006) Urbanization as a major cause of biotic homogenization. Biol Conserv 127:247–260. CrossRefGoogle Scholar
  30. Mereta ST, Boetsa P, De Meesterc L, Goethalsa PLM (2013) Development of a multimetric index based on benthic macroinvertebrates for the assessment of natural wetlands in Southwest Ethiopia. Ecol Indic 29:510–521. CrossRefGoogle Scholar
  31. Merritt RW, Cummins W (1996) An introduction to the Aquatic Insects of North America. Kendall/Hunt, DubuqueGoogle Scholar
  32. Moya N, Tomanova S, Oberdorff T (2007) Initial development of a multimetric index based on aquatic macroinvertebrates to assess streams condition in the Upper Isiboro-Secure Basin, Bolivian Amazon. Hydrobiologia 589:107–116CrossRefGoogle Scholar
  33. Ocón C, Rodrigues Capítulo A (2012) Assessment of water quality in temperate-plain streams (Argentina, South America) using a multiple approach. Ecol Austral 22:81–91Google Scholar
  34. Ode PR, Rehn AC, May JT (2005) A quantitative tool for assessing the integrity of Southern coastal California streams. Envion Manage 35:493–504CrossRefGoogle Scholar
  35. Ortega M, Velasco J, Millán A, Guerrero C (2004) An ecological integrity index for littoral wetlands in agricultural catchments of semiarid Mediterranean regions. Environ Manage 33:412–430. CrossRefPubMedGoogle Scholar
  36. Paggi AC (2003) Los quironómidos (Diptera) y su empleo como bioindicadores. Biol Acuát 21:50–57Google Scholar
  37. Pavé PJ, Marchese M (2005) Invertebrados bentónicos como indicadores de calidad del agua en ríos urbanos (Paraná-Entre Ríos, Argentina). Ecol Austral 15:183–197Google Scholar
  38. Poi De Neiff A (1979) Invertebrados acuáticos relacionados a Egeria naias (Planch), con especial referencia a los organismos fitófagos. Ecosur 6:101–109Google Scholar
  39. Poi De Neiff A (2003) Invertebrados de la vegetación del Iberá. In: Poi de Neiff A (ed) Limnología del Iberá. Aspectos físicos, químicos y biológicos de sus aguas, 1ra edn. Eudene, Corrientes, Argentina. pp 171–191Google Scholar
  40. Poi De Neiff A, Carignan R (1997) Macroinvertebrates on Eichhornia crassipes roots in two lakes of the Paraná River floodplain. Hydrobiologia 345:185–196CrossRefGoogle Scholar
  41. Poi De Neiff A, Neiff JJ (2006) Riqueza de especies y similaridad de los invertebrados que viven en plantas flotantes de la planicie de inundación del río Paraná. Interciencia 31:220–225Google Scholar
  42. Poi De Neiff A, Neiff JJ, Patiño CA, Ramos AO, Cáceres JR, Frutos SM, Canón Verón M (1999) Estado trófico de dos lagunas en planicies anegables con áreas urbanas. Facena 15:93–110Google Scholar
  43. Poi A, Galassi ME (2013) Humedales del noroeste de Corrientes. In: Benzaquén L, Blanco DE, Bó RF, Kandus P, Lingua GF, Minotti P, Quintana RD, Sverlij S, Vidal L (eds) Inventario de los humedales de Argentina. Sistemas de paisajes de humedales del Corredor Fluvial Paraná-Paraguay, Proyecto GEF4206, PNUD ARG/10/003, 1ra edn. Buenos Aires, pp 215–221Google Scholar
  44. Poi ASG, Casco SL, Neiff JJ, Carnevali RP, Gallardo LI (2016) Lagunas periurbanas de Corrientes (Argentina): de la mesotrofia a la eutrofia un camino de ida y vuelta en 20 años. Biol Acuát 31:1–9Google Scholar
  45. Poi ASG, Carnevali RP, Gallardo LI (2017) La vida en las plantas acuáticas y palustres: la diversidad de invertebrados del Iberá. In: Poi ASG (ed) Biodiversidad en las aguas del Iberá, 1ra edn. Eudene, Corrientes, pp 82–98Google Scholar
  46. Por FD, Rocha CE (1998) The Pleustal, a third limnic biochore and its neotropical centre. VerhInternat Verein Limnol 26:1876–1881Google Scholar
  47. Prat N, Ríos B, Acosta R, Riera De Vall M (2009) Los macroinvertebrados como indicadores de la calidad de las aguas. In: Domínguez E, Fernández H (eds) Macroinvertebrados bentónicos sudamericanos, 1ra edn. Fundación Miguel Lillio, San Miguel de Tucumán, pp 631–654Google Scholar
  48. Ramírez A (2010) Odonata. Rev Biol Trop 58:97–136Google Scholar
  49. Rodrígues Capítulo A, Tangorra M, Ocón C (2001) Use of benthic macroinvertebrates to assess the ecological status of pampean streams in Argentina. Aquat Ecol 35:109–119CrossRefGoogle Scholar
  50. Roldán-Pérez G (2016) Los macroinvertebrados como bioindicadores de la calidad del agua: cuatro décadas de desarrollo en Colombia y Latinoamerica. Rev Acad Colomb Cienc Ex Fis Nat 40:254–274. CrossRefGoogle Scholar
  51. Samways MJ, Steytler NS (1996) Dragonfly (Odonata) distribution patterns in urban and forest landscapes, and recommendations for riparian management. Biol Conserv 78:279–288CrossRefGoogle Scholar
  52. Sharma RC, Rawat JS (2009) Monitoring of aquatic macroinvertebrates as bioindicator for assessing the health of wetlands: A case study in the Central Himalayas, India. Ecol Indic 9:118–128CrossRefGoogle Scholar
  53. Shelly SY, Mirza ZB, Bashir S (2011) Comparative ecological study of aquatic macroinvertebrates of Mangla dam and Chashma barrage wetland areas. J Anim Plant Sci 21:340–350Google Scholar
  54. Simaika JP, Samways MJ (2009) An easy-to-use index of ecological integrity for prioritizing freshwater sites and for assessing habitat quality. Biodivers Conserv 18:1171–1185. CrossRefGoogle Scholar
  55. Stewart TW, Downing JA (2008) Macroinvertebrate communities and environmental conditions in recently constructed wetlands. Wetlands 28:141–150CrossRefGoogle Scholar
  56. Tagliaferro M, Pacual M (2017) First spatio-temporal study of macroinvertebrates in the Santa Cruz River: a large glacial river about to be dammed without a comprehensive pre-impoundment study. Hydrobiologia 784:35–49CrossRefGoogle Scholar
  57. Thorp JH, Covich AP (2001) Ecology and classification of North American Freshwater Invertebrates. Academic Press, New YorkGoogle Scholar
  58. Trigal C, García-Criado F, Fernández-Aláez C (2009) Towards a multimetric index for ecological assessment of Mediterranean flatland ponds: the use of macroinvertebrates as bioindicators. Hydrobiologia 618:109–123. CrossRefGoogle Scholar
  59. Trivinho-Strixino S, Strixino G (1995) Larvas de Chironomidae (Diptera) do estado de São Paulo: guia de identifiçacao e diagnose dos géneros. Universidade Federal de São Carlos, São CarlosGoogle Scholar
  60. Tundisi JG, Matsumura-Tundisi T (2008) Limnologia. Oficina de Textos, São PauloGoogle Scholar
  61. US EPA (2002) Methods for evaluating wetland conditions: Developing and invertebrate index of biological integrity for wetlands. Office of water, U.S Environmental Protection Agency, Washington, DC. EPA-822-R-02-019Google Scholar
  62. Zilli F, Gagneten AM (2005) Efectos de la contaminación por metales pesados sobre la comunidad bentónica de la cuenca del arroyo Cululú (Río Salado del Norte, Argentina). Interciencia 30:159–165Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Luciana Irene Gallardo
    • 1
    Email author
  • Juan Manuel Coronel
    • 2
  • Alicia Susana Guadalupe Poi
    • 1
  1. 1.Centro de Ecología Aplicada del Litoral - CECOAL (CCT Nordeste - CONICET-UNNE)CorrientesArgentina
  2. 2.Laboratorio de Biología de los Invertebrados, Facultad de Ciencias Exactas y Naturales y Agrimensura-FACENAUniversidad Nacional del Nordeste-UNNECorrientesArgentina

Personalised recommendations