Advertisement

Biodiversity and Conservation

, Volume 28, Issue 5, pp 1267–1283 | Cite as

Habitat specialization, distribution range size and body size drive extinction risk in carabid beetles

  • Dorothea NolteEmail author
  • Estève Boutaud
  • D. Johan Kotze
  • Andreas Schuldt
  • Thorsten Assmann
Original Paper

Abstract

The worldwide biodiversity crisis is ongoing. To slow down, or even halt future species loss it is important to identify potential drivers of extinction risk. Species traits can help to understand the underlying process of extinction risk. In a comprehensive study on 464 carabid beetle species, we used ordinal logistic regression to analyze the relationship of species traits to extinction risk in Central Europe, taking phylogenetic relatedness into account. To consider varying trait responses in different habitat types, we also tested models for species groups associated with different habitat types (forest, open, riparian and wetland). Our results identified three traits of particular importance as predictors for high extinction risk: (1) high habitat specialization, (2) small distribution range size (which is not considered in the categorization of the German Red List), and (3) large body size. Furthermore, large macropterous species showed high extinction risk. Overall, species associated with mountainous, coastal and open habitats generally revealed a high risk of extinction, while most forest species showed a low extinction risk. However, forest species with predatory feeding behavior were threatened, as were wetland species that reproduce in autumn. Phylogenetic relatedness had no influence on how species traits predict carabid beetle extinction risk. In the light of these results, management and recovery plans for species which exhibit characteristic traits strongly associated with extinction risks, as well as the conservation and restoration of mountain, coastal and open habitats, have to be prioritized.

Keywords

Carabidae Red List Species traits Insect decline Defaunation Conservation management 

Notes

Acknowledgements

We like to thank I. Harry, P. Brandmayr and K. Homburg for helping to complete and compile the species trait dataset, as well as two anonymous referees for their valuable comments on the manuscript.

Supplementary material

10531_2019_1724_MOESM1_ESM.pdf (16 kb)
Supplementary material 1 (PDF 15 kb)

References

  1. Assmann T (1999) The ground beetle fauna of ancient and recent woodlands in the lowlands of north-west Germany (Coleoptera, Carabidae). Biodivers Conserv 8:1499–1517.  https://doi.org/10.1023/A:1008974413376 CrossRefGoogle Scholar
  2. Balvanera P, Pfisterer AB, Buchmann N, He J-S, Nakashizuka T, Raffaelli D, Schmid B (2006) Quantifying the evidence for biodiversity effects on ecosystem functioning and services. Ecol Lett 9:1146–1156.  https://doi.org/10.1111/j.1461-0248.2006.00963.x CrossRefGoogle Scholar
  3. Barbaro L, van Halder I (2009) Linking bird, carabid beetle and butterfly life-history traits to habitat fragmentation in mosaic landscapes. Ecography 32:321–333.  https://doi.org/10.1111/j.1600-0587.2008.05546.x CrossRefGoogle Scholar
  4. Blackburn TM, Lockwood JL, Cassey P (2009) Avian invasions: The ecology and evolution of exotic birds. Oxford University Press, OxfordCrossRefGoogle Scholar
  5. Bohan DA, Boursault A, Brooks DR, Petit S (2011) National-scale regulation of the weed seedbank by carabid predators. J Appl Ecol 48:888–898.  https://doi.org/10.1111/j.1365-2664.2011.02008.x CrossRefGoogle Scholar
  6. Breuning S (1926) Über Carabus variolosus. Koleopterologische Rundschau 12:19–25Google Scholar
  7. Brooks DR, Bater JE, Clark SJ et al (2012) Large carabid beetle declines in a United Kingdom monitoring network increases evidence for a widespread loss in insect biodiversity. J Appl Ecol 49:1009–1019.  https://doi.org/10.1111/j.1365-2664.2012.02194.x CrossRefGoogle Scholar
  8. Brown JH (1984) On the relationship between abundance and distribution of species. Am Nat 124:255–279CrossRefGoogle Scholar
  9. Cardillo M, Mace GM, Jones KE et al (2005) Multiple causes of high extinction risk in large mammal species. Science 309:1239–1241.  https://doi.org/10.1126/science.1116030 CrossRefGoogle Scholar
  10. Cardoso P (2012) Habitats directive species lists: urgent need of revision. Insect Conserv Diver 5:169–174.  https://doi.org/10.1111/j.1752-4598.2011.00140.x CrossRefGoogle Scholar
  11. Ceballos G, Ehrlich PR, Barnosky AD, García A, Pringle RM, Palmer TM (2015) Accelerated modern human-induced species losses: entering the sixth mass extinction. Science Advances 1:e1400253.  https://doi.org/10.1126/sciadv.1400253 CrossRefGoogle Scholar
  12. Ceballos G, Ehrlich PR, Dirzo R (2017) Biological annihilation via the ongoing sixth mass extinction signaled by vertebrate population losses and declines. Proc Natl Acad Sci USA 114:E6089–E6096.  https://doi.org/10.1073/pnas.1704949114 CrossRefGoogle Scholar
  13. Chapman JW, Reynolds DR, Smith AD, Riley JR, Telfer MG, Woiwod IP (2005) Mass aerial migration in the carabid beetle Notiophilus biguttatus. Ecol Entomol 30:264–272.  https://doi.org/10.1111/j.0307-6946.2005.00702.x CrossRefGoogle Scholar
  14. Christensen RHB (2015) Ordinal-regression models for ordinal data. R package version 15.6-28. http://www.cran.r-project.org/package=ordinal/
  15. Clausnitzer V, Kalkman VJ, Ram M et al (2009) Odonata enter the biodiversity crisis debate: the first global assessment of an insect group. Biol Conserv 142:1864–1869.  https://doi.org/10.1016/j.biocon.2009.03.028 CrossRefGoogle Scholar
  16. Clavel J, Julliard R, Devictor V (2011) Worldwide decline of specialist species: toward a global functional homogenization? Front Ecol Environ 9:222–228.  https://doi.org/10.1890/080216 CrossRefGoogle Scholar
  17. Core Team R (2017) R: a language and environment for statistical computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  18. Council Directive 92/43/EEC of 21 May 1992 on the conservation of natural habitats and of wild fauna and flora. Official Journal of the European UnionGoogle Scholar
  19. Davies KF, Margules CR, Lawrence KF (2000) Which traits of species predict population declines in experimental forest fragments? Ecology 81:1450–1461CrossRefGoogle Scholar
  20. De Vries MFW, Poschlod P, Willems JH (2002) Challenges for the conservation of calcareous grasslands in northwestern Europe: integrating the requirements of flora and fauna. Biol Conserv 104:265–273.  https://doi.org/10.1016/S0006-3207(01)00191-4 CrossRefGoogle Scholar
  21. De Vries MFW (2014) Linking species assemblages to environmental change: moving beyond the specialist-generalist dichotomy. Basic Appl Ecol 15:279–287.  https://doi.org/10.1016/j.baae.2014.05.001 CrossRefGoogle Scholar
  22. den Boer PJ (1968) Spreading of risk and stabilization of animal numbers. Acta Biotheor 18:165–194CrossRefGoogle Scholar
  23. den Boer PJ (1977) Dispersal power and survival: Carabids in a cultivated countryside. Wageningen, Veenman & ZonenGoogle Scholar
  24. den Boer PJ (1990) Density limits and survival of local-populations in 64 carabid species with different powers of dispersal. J Evol Biol 3:19–48.  https://doi.org/10.1046/j.1420-9101.1990.3010019.x CrossRefGoogle Scholar
  25. den Boer P, van Huizen T, den Boer-Daanje W, Aukema B, den Bieman C (1980) Wing polymorphism and dimorphism in ground beetles as stages in an evolutionary process (Coleoptera: Carabidae). Entomol Gener 6:107–134Google Scholar
  26. Desender K (1996) Diversity and dynamics of coastal dune carabids. Ann Zool Fenn 33:65–75Google Scholar
  27. Desender K (2000) Flight muscle development and dispersal in the life cycle of carabid beetles: patterns and processes. Bull lnst R Sci Nat Belg Entomol 70:13–31Google Scholar
  28. Desender K, Dekoninck W, Maes D et al (2008) Een nieuwe verspreidingsatlas van de loopkevers en zandloopkevers (Carabidae) in België. Instituut voor Natuur- en Bosonderzoek, BrusselGoogle Scholar
  29. Dieker P, Drees C, Assmann T (2011) Two high-mountain burnet moth species (Lepidoptera, Zygaenidae) react differently to the global change drivers climate and land-use. Biol Conserv 144:2810–2818.  https://doi.org/10.1016/j.biocon.2011.07.018 CrossRefGoogle Scholar
  30. Dirzo R, Young HS, Galetti M, Ceballos G, Isaac NJB, Collen B (2014) Defaunation in the Anthropocene. Science 345:401–406.  https://doi.org/10.1126/science.1251817 CrossRefGoogle Scholar
  31. Duelli P (1994) Rote Liste der gefährdeten Tierarten der Schweiz. Bundesamt für Umwelt, Wald und Landschaft (BUWAL), BernGoogle Scholar
  32. Dunn RR (2005) Modern insect extinctions, the neglected majority. Conserv Biol 19:1030–1036.  https://doi.org/10.1111/j.1523-1739.2005.00078.x CrossRefGoogle Scholar
  33. Essens T, van Langevelde F, Vos RA, Van Swaay CAM, De Vries MF (2017) Ecological determinants of butterfly vulnerability across the European continent. J Insect Conserv 21:439–450.  https://doi.org/10.1007/s10841-017-9972-4 CrossRefGoogle Scholar
  34. Fahrig L (2003) Effects of habitat fragmentation on biodiversity. Annu Rev Ecol Evol Syst 34:487–515.  https://doi.org/10.1146/annurev.ecolsys.34.011802.132419 CrossRefGoogle Scholar
  35. FAO (2012) State of the world’s forests. Food and agriculture organization of the United Nations, RomeGoogle Scholar
  36. FAO (2015) Global forest resources assessment 2015: Desk reference. Food and Agriculture Organization of the United Nations, RomeGoogle Scholar
  37. Finck P, Heinze S, Raths U, Riecken U, Ssymank A (2017) Rote Liste der gefährdeten Biotoptypen Deutschlands, Dritte fortgeschriebene Fassung 2017. Naturschutz und Biologische Vielfalt 156Google Scholar
  38. Fuchs R, Herold M, Verburg PH, Clevers JGPW, Eberle J (2015) Gross changes in reconstructions of historic land cover/use for Europe between 1900 and 2010. Glob Chang Biol 21:299–313.  https://doi.org/10.1111/gcb.12714 CrossRefGoogle Scholar
  39. GAC (2009) Lebensraumpräferenzen der Laufkäfer Deutschlands—Wissensbasierter Katalog. Angewandte Carabidologie Supplement V:1-45Google Scholar
  40. Gaston KJ (2003) The structure and dynamics of geographic ranges. Oxford University Press, New YorkGoogle Scholar
  41. Gaston KJ, Fuller RA (2009) The sizes of species’ geographic ranges. J Appl Ecol 46:1–9.  https://doi.org/10.1111/j.1365-2664.2008.01596.x CrossRefGoogle Scholar
  42. Grafen A (1989) The phylogenetic regression. Philos Trans R Soc Lond B 326:119–157CrossRefGoogle Scholar
  43. Groom MJ, Meffe GK, Carroll CR (2006) Principles of conservation biology, 3rd edn. Sinauer Associates Inc, SunderlandGoogle Scholar
  44. Gruttke H, Ludwig G, Schnittler M et al (2004) Memorandum: verantwortlichkeit Deutschlands für die weltweite Erhaltung von Arten. Nat Biol Vielfalt 8:273–280Google Scholar
  45. Günther J, Assmann T (2004) Fluctuations of carabid populations inhabiting an ancient woodland (Coleoptera, Carabidae). Pedobiologia 48:159–164.  https://doi.org/10.1016/j.pedobi.2003.11.002 CrossRefGoogle Scholar
  46. Hallmann CA, Sorg M, Jongejans E et al (2017) More than 75 percent decline over 27 years in total flying insect biomass in protected areas. PLoS ONE 12:e0185809.  https://doi.org/10.1371/journal.pone.0185809 CrossRefGoogle Scholar
  47. Hendrickx F, Maelfait JP, Van Wingerden W et al (2007) How landscape structure, land-use intensity and habitat diversity affect components of total arthropod diversity in agricultural landscapes. J Appl Ecol 44:340–351.  https://doi.org/10.1111/j.1365-2664.2006.01270.x CrossRefGoogle Scholar
  48. Henle K, Davies KF, Kleyer M, Margules C, Settele J (2004) Predictors of species sensitivity to fragmentation. Biodivers Conserv 13:207–251.  https://doi.org/10.1023/B:BIOC.0000004319.91643.9e CrossRefGoogle Scholar
  49. Hochkirch A, Nieto A, Criado MG et al (2016) European red list of grasshoppers, crickets and bush-crickets. Publications Office of the European Union, Luxembourg.  https://doi.org/10.2779/60944
  50. Homburg K, Schuldt A, Drees C, Assmann T (2013) Broad-scale geographic patterns in body size and hind wing development of western Palaearctic carabid beetles (Coleoptera: Carabidae). Ecography 36:166–177.  https://doi.org/10.1111/j.1600-0587.2012.07488.x CrossRefGoogle Scholar
  51. Homburg K, Brandt P, Drees C, Assmann T (2014a) Evolutionarily significant units in a flightless ground beetle show different climate niches and high extinction risk due to climate change. J Insect Conserv 18:781–790.  https://doi.org/10.1007/s10841-014-9685-x CrossRefGoogle Scholar
  52. Homburg K, Homburg N, Schäfer F, Schuldt A, Assmann T (2014b) Carabids.org: a dynamic online database of ground beetle species traits (Coleoptera, Carabidae). Insect Conserv Divers 7:195–205.  https://doi.org/10.1111/icad.12045 CrossRefGoogle Scholar
  53. Jeppsson T, Forslund P (2014) Species’ traits explain differences in Red List status and long-term population trends in longhorn beetles. Anim Conserv 17:332–341.  https://doi.org/10.1111/acv.12099 CrossRefGoogle Scholar
  54. Koh LP, Sodhi NS, Brook BW (2004) Ecological correlates of extinction proneness in tropical butterflies. Conserv Biol 18:1571–1578.  https://doi.org/10.1111/j.1523-1739.2004.00468.x CrossRefGoogle Scholar
  55. Koivula M, Kukkonen J, Niemelä J (2002) Boreal carabid-beetle (Coleoptera, Carabidae) assemblages along the clear-cut originated succession gradient. Biodivers Conserv 11:1269–1288.  https://doi.org/10.1023/A:1016018702894 CrossRefGoogle Scholar
  56. Kotze DJ, O’Hara RB (2003) Species decline: but why? Explanations of carabid beetle (Coleoptera, Carabidae) declines in Europe. Oecologia 135:138–148.  https://doi.org/10.1007/s00442-002-1174-3 CrossRefGoogle Scholar
  57. Kotze DJ, Niemelä J, O’Hara RB, Turin H (2003) Testing abundance-range size relationships in European carabid beetles (Coleoptera, Carabidae). Ecography 26:553–566.  https://doi.org/10.1034/j.1600-0587.2003.03488.x CrossRefGoogle Scholar
  58. Kotze DJ, Brandmayr P, Casale A et al (2011) Forty years of carabid beetle research in Europe-from taxonomy, biology, ecology and population studies to bioindication, habitat assessment and conservation. ZooKeys 100:55–148.  https://doi.org/10.3897/zookeys.100.1523 CrossRefGoogle Scholar
  59. Lande R (1993) Risks of population extinction from demographic and environmental stochasticity and random catastrophes. Am Nat 142:911–927.  https://doi.org/10.1086/285580 CrossRefGoogle Scholar
  60. Langellotto GA, Denno RF, Ott JR (2000) A trade-off between flight capability and reproduction in males of a wing-dimorphic insect. Ecology 81:865–875CrossRefGoogle Scholar
  61. Leather SR (2018) “Ecological Armageddon”: more evidence for the drastic decline in insect numbers. Ann Appl Biol 172:1–3.  https://doi.org/10.1111/aab.12410 CrossRefGoogle Scholar
  62. Löbl I, Smetana A (eds) (2003) Catalogue of Palaearctic Coleoptera Vol. 1: Archostemata, Myxophaga, Adephaga. Apollo Books, StenstrupGoogle Scholar
  63. Lövei GL, Sunderland KD (1996) Ecology and behavior of ground beetles (Coleoptera: Carabidae). Annu Rev Entomol 41:231–256CrossRefGoogle Scholar
  64. Ludwig G, Haupt H, Gruttke H, Binot-Hafke M (2005) Methodische Weiterentwicklung der Roten Listen gefährdeter Tiere, Pflanzen und Pilze in Deutschland - eine Übersicht. Natur Landsch 80:257–265Google Scholar
  65. Ludwig G, Haupt H, Gruttke H, Binot-Hafke M (2006) Methodische Anleitung zur Erstellung Roter Listen gefährdeter Tiere, Pflanzen und Pilze. BfN-Skripten 191:1–97Google Scholar
  66. Maltby E (ed) (2009) Functional assessment of wetlands: towards evaluation of ecosystem services. Woodhead Publishing, CambridgeGoogle Scholar
  67. Matern A, Drees C, Kleinwachter M, Assmann T (2007) Habitat modelling for the conservation of the rare ground beetle species Carabus variolosus (Cololeoptera, Carabidae) in the riparian zones of headwaters. Biol Conserv 136:618–627.  https://doi.org/10.1016/j.biocon.2007.01.006 CrossRefGoogle Scholar
  68. Matern A, Drees C, Meyer H, Assmann T (2008) Population ecology of the rare carabid beetle Carabus variolosus (Coleoptera: Carabidae) in north-west Germany. J Insect Conserv 12:591–601.  https://doi.org/10.1007/s10841-007-9096-3 CrossRefGoogle Scholar
  69. McKinney ML, Lockwood JL (1999) Biotic homogenization: a few winners replacing many losers in the next mass extinction. Trends Ecol Evol 14:450–453.  https://doi.org/10.1016/S0169-5347(99)01679-1 CrossRefGoogle Scholar
  70. Moretti M, Dias ATC, de Bello F et al (2017) Handbook of protocols for standardized measurement of terrestrial invertebrate functional traits. Funct Ecol 31:558–567.  https://doi.org/10.1111/1365-2435.12776 CrossRefGoogle Scholar
  71. Müller-Motzfeld G (2005) Zur Taxonomie, Entdeckungsgeschichte und Verbreitung der “FFH-Art” Carabus menetriesi Faldermann in Hummel, 1827. Angew Carabidol Suppl 4:11–18Google Scholar
  72. Nolte D, Schuldt A, Gossner MM, Ulrich W, Assmann T (2017) Functional traits drive ground beetle community structures in Central European forests: implications for conservation. Biol Conserv 213:5–12.  https://doi.org/10.1016/j.biocon.2017.06.038 CrossRefGoogle Scholar
  73. Ober KA, Maddison DR (2008) Phylogenetic relationships of tribes within Harpalinae (Coleoptera: Carabidae) as inferred from 28S ribosomal DNA and the wingless gene. J Insect Sci 8:1–32.  https://doi.org/10.1673/031.008.6301 CrossRefGoogle Scholar
  74. Pearson RG, Stanton JC, Shoemaker KT et al (2014) Life history and spatial traits predict extinction risk due to climate change. Nat Clim Chang 4:217.  https://doi.org/10.1038/nclimate2113 CrossRefGoogle Scholar
  75. Petrow T, Merz B (2009) Trends in flood magnitude, frequency and seasonality in Germany in the period 1951–2002. J Hydrol 371:129–141.  https://doi.org/10.1016/j.jhydrol.2009.03.024 CrossRefGoogle Scholar
  76. Powney GD, Cham SSA, Smallshire D, Isaac NJB (2015) Trait correlates of distribution trends in the Odonata of Britain and Ireland. PeerJ 3:e1410.  https://doi.org/10.7717/peerj.1410 CrossRefGoogle Scholar
  77. Purvis A, Gittleman JL, Cowlishaw G, Mace GM (2000a) Predicting extinction risk in declining species. P Roy Soc B 267:1947–1952.  https://doi.org/10.1098/rspb.2000.1234 CrossRefGoogle Scholar
  78. Purvis A, Jones KE, Mace GM (2000b) Extinction. BioEssays 22:1123–1133.  https://doi.org/10.1002/1521-1878(200012)22:12%3c1123:AID-BIES10%3e3.0.CO;2-C CrossRefGoogle Scholar
  79. Rands MRW, Adams WM, Bennum L et al (2010) Biodiversity conservation: challenges beyond 2010. Science 329:1298–1303.  https://doi.org/10.1126/science.1189138 CrossRefGoogle Scholar
  80. Robles H, Ciudad C (2012) Influence of habitat quality, population size, patch size, and connectivity on patch-occupancy dynamics of the middle spotted woodpecker. Conserv Biol 26:284–293.  https://doi.org/10.1111/j.1523-1739.2011.01816.x CrossRefGoogle Scholar
  81. Sala OE, Chapin FS, III., Armesto JJ et al (2000) Global biodiversity scenarios for the Year 2100. Science 287:1770–1774.  https://doi.org/10.1126/science.287.5459.1770 CrossRefGoogle Scholar
  82. Schmidt J, Trautner J, Müller-Motzfeld G (2016) Rote Liste und Gesamtartenliste der Laufkäfer (Coleoptera: Carabidae) Deutschlands. Nat Biol Vielfalt 70(4):139–204Google Scholar
  83. Seddon PJ, Griffiths CJ, Soorae PS, Armstrong DP (2014) Reversing defaunation: restoring species in a changing world. Science 345:406–412.  https://doi.org/10.1126/science.1251818 CrossRefGoogle Scholar
  84. Seibold S, Brandl R, Buse J, Hothorn T, Schmidl J, Thorn S, Müller J (2015) Association of extinction risk of saproxylic beetles with ecological degradation of forests in Europe. Conserv Biol 29:382–390.  https://doi.org/10.1111/cobi.12427 CrossRefGoogle Scholar
  85. Simberloff D (1994) The ecology of extinction. Acta Palaeontol Pol 38:159–174Google Scholar
  86. Soliveres S, Manning P, Prati D et al (2016) Locally rare species influence grassland ecosystem multifunctionality. Philos T R Soc B.  https://doi.org/10.1098/rstb.2015.0269 Google Scholar
  87. Terzopoulou S, Rigal F, Whittaker RJ, Borges PAV, Triantis KA (2015) Drivers of extinction: the case of Azorean beetles. Biol Lett 11:20150273.  https://doi.org/10.1098/rsbl.2015.0273 CrossRefGoogle Scholar
  88. Thiele H-U (1977) Carabid beetles in their environments: A study on habitat selection by adaptations in physiology and behaviour. Springer, BerlinCrossRefGoogle Scholar
  89. Trautner J, Rietze J (2000) Zur Verbreitung und Bestandssituation von Chlaenius sulcicollis (PAYKULL, 1798) in Europa und seinem Wiederfund in Deutschland. Angew Carabidol 2:74–80Google Scholar
  90. Turin H, Penev L, Casale A et al (2003) Species accounts. In: Turin H, Penev L, Casale A (eds) The genus Carabus in Europe: a synthesis. Pensoft Publishers and European Invertebrate Survey, Sofia, pp 151–284Google Scholar
  91. Vermeulen R (1994) The effects of different vegetation structures on the dispersal of carabid beetles from poor sandy heaths and grasslands. In: Desender K, Dufrêne M, Loreau M, Luff ML, Maelfait J-P (eds) Carabid beetles: ecology and evolution. Kluwer Academic Publisher, New York. pp 387–392.  https://doi.org/10.1007/978-94-017-0968-2 CrossRefGoogle Scholar
  92. Zalewski M, Sienkiewicz P, Kujawa K, Hajdamowicz I, Ulrich W (2012) Ground beetles on islands: on the effects of habitat and dispersal. Ann Zool Fenn 49:139–151.  https://doi.org/10.5735/086.049.0302 CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Institute of EcologyLeuphana University LüneburgLüneburgGermany
  2. 2.Department of BiologyUniversity of HildesheimHildesheimGermany
  3. 3.Ecosystems and Environment Research Programme, Faculty of Biological and Environmental SciencesUniversity of HelsinkiLahtiFinland
  4. 4.German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-LeipzigLeipzigGermany
  5. 5.Forest Nature ConservationGeorg-August-University GöttingenGöttingenGermany

Personalised recommendations