Biodiversity and Conservation

, Volume 28, Issue 5, pp 1091–1107 | Cite as

Forest cover drives leaf litter ant diversity in primary rainforest remnants within human-modified tropical landscapes

  • Diana A. Ahuatzin
  • Erick J. Corro
  • Armando Aguirre Jaimes
  • Jorge E. Valenzuela González
  • Rodrigo Machado Feitosa
  • Milton Cezar Ribeiro
  • Juan Carlos López Acosta
  • Rosamond Coates
  • Wesley DáttiloEmail author
Original Paper
Part of the following topical collections:
  1. Forest and plantation biodiversity


The main effects of habitat loss and fragmentation have been addressed through changes in diversity patterns at different spatial levels. Species richness and diversity are the most used descriptors to assess the effect of changes in land use on tropical communities. However, other biological responses such as richness and diversity of trophic guilds may also provide a better understanding about the robustness and resilience of tropical environments to disturbance. In this study, we evaluated how changes in local and landscape characteristics associated to habitat loss and fragmentation affect: (i) species richness and Shannon diversity as well as (ii) trophic guild richness and diversity of leaf litter ants in human-modified tropical rainforest landscapes in Mexico. For this, we sampled ants in 16 sampling sites and recorded a series of descriptors at both local (i.e. elevation, temperature, relative humidity, soil pH, canopy cover, litter volume and vegetation structure) and landscape level (i.e. landscape heterogeneity, forest cover and connectivity). Overall, we observed that increasing primary forest cover within the sampling sites positively influenced richness and diversity of species and trophic guilds. In addition, at the local level, we found that only richness and diversity of ant species were negatively associated with tree density (i.e. number of trees, litter volume and canopy cover). These findings suggest that opportunistic species can be favored in environments with low tree density. In short, our complementary approach highlights the importance of environmental variability and primary forest cover in the maintenance of ant biodiversity in primary rainforest remnants.


Formicidae Guilds Land-cover change Landscape ecology Los Tuxtlas Spatial levels 



The authors thank to Praxedis Sinaca Colín and Karla Selene Andalco Cid for their help during the fieldwork of this study. Our appreciation and deep gratitude is given to the staff of the “Los Tuxtlas” Tropical Biology Field Station, for their support and hospitality. We also wish to thank to the owners of the tropical forest fragments for allowing us to carry out this study within their properties. We are very grateful to the staff of the Entomological Collection IEXA, Dora L. Martínez Tlapa, Miguel Ángel García Martínez and Gibran Renoy Pérez Toledo, for the unconditional support and their valuable help identifying the collected specimens. We are thankful to José G. García Franco, Federico Escobar Sarria and Sebastian Sendoya for their comments and suggestions to this manuscript. DAA gratefully acknowledges the award of a graduate studies scholarship from CONACyT (No. 416583). AA and WD received financial contribution by PO-INECOL (20030-11315) and PO-INECOL (20030-11581), respectively. RMF was supported by CNPq (grant 302462/2016-3). MCR was funded by FAPESP (2013/50421-2), PROCAD/CAPES (project # 88881.068425/2014-01) and CNPq UNIVERSAL (425746/2016-0) and receives research grants from the Brazilian Council of Research and Scientific Development (CNPq) (312045/2013-1; 312292/2016-3). Finally, we thank the reviewers, whose constructive suggestions have improved the quality of this research paper.

Supplementary material

10531_2019_1712_MOESM1_ESM.doc (576 kb)
Supplementary material 1 (DOC 575 kb)


  1. Andersen A (1997) Using ants as bioindicators: multiscale issues in ant community ecology. Conserv Ecol 1:8CrossRefGoogle Scholar
  2. Andersen AN, Hoffmann BD, Müller WJ, Griffiths AD (2002) Using ants as bioindicators in land management: simplifying assessment of ant community responses. J Appl Ecol 39:8–17CrossRefGoogle Scholar
  3. Asner GP, Rudel TK, Aide TM, Defries R, Emerson R (2009) A contemporary assessment of change in humid tropical forests. Conserv Biol 23:1386–1395CrossRefPubMedGoogle Scholar
  4. Assis DS, Dos Santos IA, Ramos FN, Barrios-Rojas KE, Majer JD, Vilela EF (2018) Agricultural matrices affect ground ant assemblage composition inside forest fragments. PLoS ONE 13:e0197697CrossRefPubMedPubMedCentralGoogle Scholar
  5. Badano EI, Regidor HA, Nunez HA, Acosta R, Gianoli E (2005) Species richness and structure of ant communities in a dynamic archipelago: effects of island area and age. J Biogeogr 32:221–227CrossRefGoogle Scholar
  6. Bartón K (2016) Package “MuMIn: Multi-model inference”. R package version 1.5.6.
  7. Beattie A, Hughes L (2002) Ant–plant interactions. In: Herrera CM, Pellmyr O (eds) Plant–animal interactions: an evolutionary approach. Blackwell Science, Great Britain, pp 211–235Google Scholar
  8. Borcard D, Gillet F, Legendre P (2011) Numerical ecology with R, 6th edn. Springer, New York, p 306CrossRefGoogle Scholar
  9. Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information and theoretic approach, 2nd edn. Springer, New York, p 1229Google Scholar
  10. Campbell KU, Crist TO (2017) Ant species assembly in constructed grasslands is structured at patch and landscape levels. Insect Conserv Divers 10:180–191CrossRefGoogle Scholar
  11. Carvalho KS, Vasconcelos HL (1999) Forest fragmentation in central Amazonia and its effects on litter-dwelling ants. Biol Conserv 91:151–157CrossRefGoogle Scholar
  12. Chao A, Jost L (2012) Coverage-based rarefaction and extrapolation: standardizing samples by completeness rather than size. Ecology 93:2533–2547CrossRefGoogle Scholar
  13. Coelho LFM, Ribeiro MC, Pereira RAS (2014) Water availability determines the richness and density of fig trees within Brazilian semideciduous forest landscapes. Acta Oecol 57:109–116CrossRefGoogle Scholar
  14. Corro EJ, Ahuatzin DA, Aguirre A, Favila ME, Ribeiro MC, Acosta JCL, Dáttilo W (2019) Forest cover and landscape heterogeneity shape ant-plant co-occurrence networks in human-dominated tropical rainforests. Landscape Ecol. CrossRefGoogle Scholar
  15. Crist TO, Wiens JA (1994) Scale effects of vegetation on forager movement and seed harvesting by ants. Oikos 69:37–46CrossRefGoogle Scholar
  16. Cross SL, Cross AT, Merritt DJ, Dixon KW, Andersen AN (2016) Biodiversity responses to vegetation structure in a fragmented landscape: ant communities in a peri-urban coastal dune system. J Insect Conserv 20:485–495CrossRefGoogle Scholar
  17. Dauber J, Hirsch M, Simmering D, Waldhardt R, Otte A, Wolters V (2003) Landscape structure as an indicator of biodiversity: matrix effects on species richness. Agric Ecosyst Environ 98:321–329CrossRefGoogle Scholar
  18. Dauber J, Purtauf T, Allspach A, Frisch J, Voigtländer K, Wolters V (2005) Local vs. landscape controls on diversity: a test using surface-dwelling soil macroinvertebrates of differing mobility. Glob Ecol Biogeogr 14:213–221CrossRefGoogle Scholar
  19. De la Mora A, Murnen CJ, Philpott SM (2013) Local and landscape drivers of biodiversity of four groups of ants in coffee landscapes. Biodivers Conserv 22:871–888CrossRefGoogle Scholar
  20. Debuse VJ, King J, House AP (2007) Effect of fragmentation, habitat loss and within-patch habitat characteristics on ant assemblages in semi-arid woodlands of eastern Australia. Landsc Ecol 22:731–745CrossRefGoogle Scholar
  21. Del Toro I, Silva RR, Ellison AM (2015) Predicted impacts of climatic change on ant functional diversity and distributions in eastern North American forests. Divers Distrib 21:781–791CrossRefGoogle Scholar
  22. Devictor V, Clavel J, Julliard R, Lavergne S, Mouillot D, Thuiller W, Venail P, Villéger S, Mouquet N (2010) Defining and measuring ecological specialization. J Appl Ecol 47:15–25CrossRefGoogle Scholar
  23. Di Giulio M, Edwards PJ, Meister E (2001) Enhancing insect diversity in agricultural grasslands: the roles of management and landscape structure. J Appl Ecol 38:310–319CrossRefGoogle Scholar
  24. Dormann CF et al (2013) Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography 36:001–020CrossRefGoogle Scholar
  25. Duelli P, Obrist MK (2003) Biodiversity indicators: the choice of values and measures. Agric Ecosyst Environ 98:87–98CrossRefGoogle Scholar
  26. Fahrig L (2003) Effects of habitat fragmentation on biodiversity. Annu Rev Ecol Evol Syst 34:487–515CrossRefGoogle Scholar
  27. Fahrig L (2013) Rethinking patch size and isolation effects: the habitat amount hypothesis. J Biogeogr 40:1649–1663CrossRefGoogle Scholar
  28. Fahrig L (2017) Ecological responses to habitat fragmentation per se. Annu Rev Ecol Evol Syst 48:1–23CrossRefGoogle Scholar
  29. Falcão JCF, Dáttilo W, Díaz-Castelazo C, Rico-Gray V (2017) Assessing the impacts of tramp and invasive species on the structure and dynamics of ant-plant interaction networks. Biol Conserv 209:517–523CrossRefGoogle Scholar
  30. Fayle TM, Turner EC, Snaddon JL, Chey VK, Chung AY, Eggleton P, Foster WA (2010) Oil palm expansion into rain forest greatly reduces ant biodiversity in canopy, epiphytes and leaf-litter. Basic Appl Ecol 11:337–345CrossRefGoogle Scholar
  31. Fischer J, Lindenmayer DB (2007) Landscape modification and habitat fragmentation: a synthesis. Glob Ecol Biogeogr 16:265–280CrossRefGoogle Scholar
  32. García-Martínez MÁ, Martínez-Tlapa DL, Pérez-Toledo GR, Quiroz-Robledo LN, Castaño-Meneses G, Laborde J, Valenzuela-González JE (2015) Taxonomic, species and functional group diversity of ants in a tropical anthropogenic landscape. Trop Conserv Sci 8:1017–1032CrossRefGoogle Scholar
  33. García-Martínez MÁ, Martínez-Tlapa DL, Pérez-Toledo GR, Quiroz-Robledo LN, Valenzuela-González JE (2016) Myrmecofauna (Hymenoptera: Formicidae) response to habitat characteristics of tropical montane cloud forests in central Veracruz, Mexico. Fla Entomol 99:248–256CrossRefGoogle Scholar
  34. García-Martínez MÁ, Valenzuela-González JE, Escobar-Sarria F, López-Barrera F, Castaño-Meneses G (2017) The surrounding landscape influences the diversity of leaf-litter ants in riparian cloud forest remnants. PLoS ONE 12:e0172464CrossRefPubMedPubMedCentralGoogle Scholar
  35. Gerlach J, Samways M, Pryke J (2013) Terrestrial invertebrates as bioindicators: an overview of available taxonomic groups. J Insect Conserv 17:831–850CrossRefGoogle Scholar
  36. González-Soriano E, Dirzo R, Vogt R (1997) Historia natural de los Tuxtlas. UNAM. Instituto de Biología, Mexico, p 647Google Scholar
  37. Grimbacher PS, Edwards W, Liddell MJ, Nelson PN, Nichols C, Wardhaugh CW, Stork NE (2018) Temporal variation in abundance of leaf litter beetles and ants in an Australian lowland tropical rainforest is driven by climate and litter fall. Biodivers Conserv. CrossRefGoogle Scholar
  38. Grinnell J (1917) The niche-relationships of the California Thrasher. Auk 34:427–433CrossRefGoogle Scholar
  39. Groc S, Delabie JH, Fernandez F, Leponce M, Orivel J, Silvestre R, Vasconcelos H, Dejean A (2014) Leaf-litter ant communities (Hymenoptera: Formicidae) in a pristine Guianese rainforest: stable functional structure versus high species turnover. Myrmecol News 19:43–51Google Scholar
  40. Hadley AS, Betts MG (2016) Refocusing habitat fragmentation research using lessons from the last decade. Curr Landsc Ecol Rep 1:55–66CrossRefGoogle Scholar
  41. Helms JA (2018) The flight ecology of ants (Hymenoptera: Formicidae). Myrmecol News 26:19–30Google Scholar
  42. Hemmings Z, Andrew NR (2017) Effects of microclimate and species identity on body temperature and thermal tolerance of ants (Hymenoptera: Formicidae). Austral Entomol 56:104–114CrossRefGoogle Scholar
  43. Hölldobler B, Wilson EO (1990) The ants. Harvard University Press, CambridgeCrossRefGoogle Scholar
  44. Hooper DU, Chapin FS, Ewel JJ, Hector A, Inchausti P, Lavorel S, Lawton JH, Lodge DM, Loreau M, Naeem S, Schmid B, Setälä H, Symstad AJ, Vander-Meer J, Wardle DA (2005) Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecol Monogr 75:3–35CrossRefGoogle Scholar
  45. Hsieh T, Ma K, Chao A (2016) Package “iNEXT: iNterpolation and EXTrapolation for species diversity”. R package version 2.0. 12 URL
  46. Johnson JT, Adkins JK, Rieske LK (2014) Canopy vegetation influences ant (Hymenoptera: Formicidae) communities in headwater stream riparian zones of Central Appalachia. J Insect Sci 14:1–5CrossRefGoogle Scholar
  47. Jost L (2006) Entropy and diversity. Oikos 113:363–375CrossRefGoogle Scholar
  48. Jost L (2007) Partitioning diversity into independent alpha and beta components. Ecology 88:2427–2439CrossRefPubMedGoogle Scholar
  49. Kareiva P (1994) Special feature: space: the final frontier for ecological theory. Ecology 75:1-1Google Scholar
  50. Klimes P, Idigel C, Rimandai M, Fayle TM, Janda M, Weiblen GD, Novotny V (2012) Why are there more arboreal ant species in primary than in secondary tropical forests? J Anim Ecol 81:1103–1112CrossRefPubMedGoogle Scholar
  51. Laska MS (1997) Structure of understory shrub assemblages in adjacent secondary and old growth tropical wet forests, Costa Rica. Biotropica 29:29–37CrossRefGoogle Scholar
  52. Lassau SA, Hochuli DF (2004) Effects of habitat complexity on ant assemblages. Ecography 27:157–164CrossRefGoogle Scholar
  53. Leal IR, Filgueiras BK, Gomes JP, Iannuzzi L, Andersen AN (2012) Effects of habitat fragmentation on ant richness and functional composition in Brazilian Atlantic forest. Biodivers Conserv 21:1687–1701CrossRefGoogle Scholar
  54. Liu C, Dudley KL, Zheng-Hui X, Economo EP (2018) Mountain metacommunities: climate and spatial connectivity shape ant diversity in a complex landscape. Ecography 41:101–112CrossRefGoogle Scholar
  55. Longino JT, Branstetter MG, Valenzuela J (2017) Ants of Los Tuxtlas biological station, Veracruz, Mexico. ADMAC. Accessed: 05 February 2017
  56. Martello F, de Bello F, de Castro Morini MS, Silva RR, de Souza-Campana DR, Ribeiro MC, Carmona CP (2018) Homogenization and impoverishment of taxonomic and functional diversity of ants in Eucalyptus plantations. Sci Rep 8:3266CrossRefPubMedPubMedCentralGoogle Scholar
  57. McCary MA, Minor E, Wise DH (2018) Covariation between local and landscape factors influences the structure of ground-active arthropod communities in fragmented metropolitan woodlands. Landsc Ecol 33:225–239CrossRefGoogle Scholar
  58. McGarigal K, Marks BJ (1995) Fragstat: spatial pattern analysis program for quantifying landscape structure. Gen. Tech. Rep. PNW-GTR-351. US Department of Agriculture, Forest Service, Pacific Northwest Research StationGoogle Scholar
  59. Mendes ES, Fonseca C, Marques SF, Maia D, Pereira MJR (2017) Bat richness and activity in heterogeneous landscapes: guild-specific and scale-dependent? Landsc Ecol 32:295–311CrossRefGoogle Scholar
  60. Mendoza E, Fay J, Dirzo R (2005) A quantitative analysis of forest fragmentation in Los Tuxtlas, southeast Mexico: patterns and implications for conservation. Rev Chil His Nat 78:451–467Google Scholar
  61. Miranda F, Hernández E (1963) Los tipos de vegetación de México y su clasificación. Bol Soc Bot México 28:29–179Google Scholar
  62. Mostacedo B, Fredericksen T (2000) Manual de métodos básicos de muestreo y análisis en ecología vegetal. Proyecto de manejo forestal sostenible (BOLFOR). El País. Bolivia, pp 10–11Google Scholar
  63. Murcia C (1995) Edge effects in fragmented forests: implications for conservation. Trends Ecol Evol 10:58–62CrossRefPubMedGoogle Scholar
  64. Newbold T et al (2015) Global effects of land use on local terrestrial biodiversity. Nature 520:45–50CrossRefPubMedGoogle Scholar
  65. Oksanen J et al (2017) “vegan: Community Ecology Package”. R Package 2.4-3.
  66. Pacheco R, Vasconcelos HL (2012) Habitat diversity enhances ant diversity in a naturally heterogeneous Brazilian landscape. Biodivers Conserv 21:797–809CrossRefGoogle Scholar
  67. Paolucci LN, Solar RR, Sobrinho TG, Sperber CF, Schoereder JH (2012) How does small-scale fragmentation affect litter-dwelling ants? The role of isolation. Biodivers Conserv 21:3095–3105CrossRefGoogle Scholar
  68. Philpott SM, Foster PF (2005) Nest-site limitation in coffee agroecosystems: artificial nests maintain diversity of arboreal ants. Ecol Appl 15:1478–1485CrossRefGoogle Scholar
  69. R Core Team (2017) R: a language and environment for statistical computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  70. Radford JQ, Bennett AF, Cheers GJ (2005) Landscape-level thresholds of habitat cover for woodland-dependent birds. Biol Conserv 124:317–337CrossRefGoogle Scholar
  71. Reynolds C et al (2017) Inconsistent effects of landscape heterogeneity and land-use on animal diversity in an agricultural mosaic: a multi-scale and multi-taxon investigation. Landscape Ecol. in press CrossRefGoogle Scholar
  72. Ribas CR, Schoereder JH, Pic M, Soares SM (2003) Tree heterogeneity, resource availability, and larger scale processes regulating arboreal ant species richness. Austral Ecol 28:305–314CrossRefGoogle Scholar
  73. Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675CrossRefPubMedPubMedCentralGoogle Scholar
  74. Schoereder JH, Sobrinho TG, Ribas CR, Campos RBF (2004) Colonization and extinction of ant communities in a fragmented landscape. Austral Ecol 29:391–398CrossRefGoogle Scholar
  75. Sebastián-González E, Dalsgaard B, Sandel B, Guimarães PR (2015) Macroecological trends in nestedness and modularity of seed-dispersal networks: human impact matters. Global Ecol Biogeogr 24:293–303CrossRefGoogle Scholar
  76. Silva RR, Brandão CRF (2014) Ecosystem-wide morphological structure of leaf-litter ant communities along a tropical latitudinal gradient. PLoS ONE 9:e93049CrossRefPubMedPubMedCentralGoogle Scholar
  77. Simberloff D, Dayan T (1991) The guild concept and the structure of ecological communities. Annu Rev Ecol Evol Syst 22:115–143CrossRefGoogle Scholar
  78. Sobrinho TG, Schoereder JH (2007) Edge and shape effects on ant (Hymenoptera: Formicidae) species richness and composition in forest fragments. Biodivers Conserv 16:1459–1470CrossRefGoogle Scholar
  79. Solar RR et al (2015) How pervasive is biotic homogenization in human-modified tropical forest landscapes? Ecol Lett 18:1108–1118CrossRefPubMedGoogle Scholar
  80. Solar RR, Barlow J, Andersen AN, Schoereder JH, Berenguer E, Ferreira JN, Gardner TA (2016) Biodiversity consequences of land-use change and forest disturbance in the Amazon: a multi-scale assessment using ant communities. Biol Conserv 197:98–107CrossRefGoogle Scholar
  81. Soto M (2006) El Clima. In: Guevara SS, Laborde DJ, Sánchez-Ríos G (eds) Los Tuxtlas: El paisaje de la sierra. Instituto de Ecología, A. C. y Unión Europea, Mexico, pp 195–200Google Scholar
  82. Spiesman BJ, Cumming GS (2008) Communities in context: the influences of multiscale environmental variation on local ant community structure. Landsc Ecol 23:313–325CrossRefGoogle Scholar
  83. Stevens RD, Cox SB, Strauss RE, Willig MR (2003) Patterns of functional diversity across an extensive environmental gradient: vertebrate consumers, hidden treatments and latitudinal trends. Ecol Lett 6:1099–1108CrossRefGoogle Scholar
  84. Syrbe RU, Walz U (2012) Spatial indicators for the assessment of ecosystem services: providing, benefiting and connecting areas and landscape metrics. Ecol Indic 21:80–88CrossRefGoogle Scholar
  85. Tews J, Brose U, Grimm V, Tielbörger K, Wichmann MC, Schwager M, Jeltsch F (2004) Animal species diversity driven by habitat heterogeneity/diversity: the importance of keystone structures. J Biogeogr 31:79–92CrossRefGoogle Scholar
  86. Tiede Y, Schlautmann J, Donoso DA, Wallis CI, Bendix J, Brandl R, Farwig N (2017) Ants as indicators of environmental change and ecosystem processes. Ecol Indic 83:527–537CrossRefGoogle Scholar
  87. Tscharntke T et al (2012) Landscape moderation of biodiversity patterns and processes-eight hypotheses. Biol Rev 87:661–685CrossRefGoogle Scholar
  88. Turner IM (1996) Species loss in fragments of tropical rain forest: a review of the evidence. J Appl Ecol 33:200–209CrossRefGoogle Scholar
  89. Underwood EC, Fisher BL (2006) The role of ants in conservation monitoring: if, when, and how. Biol Conserv 132:166–182CrossRefGoogle Scholar
  90. Van der Wal J, Falconi L, Januchowski D, Shoo L, Storlie C (2012) SDMTools: species distribution modelling tools: tools for processing data associated with species distribution modelling exercises. R package version 1.1-13Google Scholar
  91. Vasconcelos HL, Vilhena J, Magnusson WE, Albernaz AL (2006) Long-term effects of forest fragmentation on Amazonian ant communities. J Biogeogr 33:1348–1356CrossRefGoogle Scholar
  92. Vasconcelos HL, Leite MF, Vilhena J, Lima AP, Magnusson WE (2008) Ant diversity in an Amazonian savanna: relationship with vegetation structure, disturbance by fire, and dominant ants. Austral Ecol 33:221–231CrossRefGoogle Scholar
  93. Vavrek MJ (2015) Package “fossil”. R Package Version 0.3.7.
  94. Von Thaden JJ, Laborde J, Guevara S, Venegas-Barrera CS (2018) Forest cover change in the Los Tuxtlas Biosphere Reserve and its future: the contribution of the 1998 protected natural area decree. Land Use Policy 72:443–550CrossRefGoogle Scholar
  95. Wiezik M, Svitok M, Wieziková A, Dovčiak M (2015) Identifying shifts in leaf-litter ant assemblages (Hymenoptera: Formicidae) across ecosystem boundaries using multiple sampling methods. PLoS ONE 10:e0134502CrossRefPubMedPubMedCentralGoogle Scholar
  96. Woodcock P, Edwards DP, Fayle TM, Newton RJ, Khen CV, Bottrell SH, Hamer KC (2011) The conservation value of South East Asia’s highly degraded forests: evidence from leaf-litter ants. Philos Trans R Soc Lond B Biol Sci 366:3256–3264CrossRefPubMedPubMedCentralGoogle Scholar
  97. Worthen WB (1996) Community composition and nested-subset analyses: basic descriptors for community ecology. Oikos 76:417–426CrossRefGoogle Scholar
  98. Yanoviak SP, Kaspari M (2000) Community structure and the habitat templet: ants in the tropical forest canopy and litter. Oikos 89:259–266CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Diana A. Ahuatzin
    • 1
  • Erick J. Corro
    • 1
  • Armando Aguirre Jaimes
    • 2
  • Jorge E. Valenzuela González
    • 3
  • Rodrigo Machado Feitosa
    • 4
  • Milton Cezar Ribeiro
    • 5
  • Juan Carlos López Acosta
    • 6
  • Rosamond Coates
    • 7
  • Wesley Dáttilo
    • 1
    Email author
  1. 1.Red de Ecoetología, Instituto de Ecología A.C.XalapaMexico
  2. 2.Red de Interacciones Multitróficas, Instituto de Ecología A.C.XalapaMexico
  3. 3.Red de Ecología Funcional, Instituto de Ecología A.C.XalapaMexico
  4. 4.Departamento de ZoologiaUniversidade Federal de ParanáCuritibaBrazil
  5. 5.Spatial Ecology and Conservation Lab (LEEC), Department of Ecology, Bioscience InstituteUNESP-Univ Estadual Paulista, Rio ClaroRio ClaroBrazil
  6. 6.Centro de Investigaciones TropicalesUniversidad VeracruzanaXalapaMexico
  7. 7.Estación de Biología Tropical Los Tuxtlas, Instituto de BiologíaUniversidad Nacional Autónoma de MéxicoSan Andrés TuxtlaMexico

Personalised recommendations