Advertisement

Biodiversity and Conservation

, Volume 28, Issue 5, pp 1029–1048 | Cite as

Red List Index application for vascular flora along an altitudinal gradient

  • Antonio J. Mendoza-FernándezEmail author
  • Francisco J. Pérez-García
  • Fabián Martínez-Hernández
  • Esteban Salmerón-Sánchez
  • Agustín Lahora
  • María E. Merlo
  • Juan F. Mota
Original Paper
  • 245 Downloads

Abstract

High mountain habitats are particularly susceptible to climate changes, which have been classified as the key drivers of biodiversity extinction. Plant species have proved to be a suitable surrogate for estimating the state of an area’s total biodiversity, and the Red List Index (RLI) is one of the key global Convention on Biological Diversity Indicators. The main aim of this study was to analyse the changes in the categories of threatened flora in a specific region along an altitudinal gradient, and to determine possible relationships between threat categories, altitudinal ranges and global change effects, through RLI application. The study of the trends of threatened flora in Andalusia reveals a general decline in the species’ conservation status. Altitudinal ranges above 3000 m present greater deterioration of the threat categories. Thus, the Mediterranean high-mountain flora is confirmed as being highly sensitive to habitat alterations and as suffering the most severe threats. However, the study did not highlight the global change threat factor from the studied Red Lists. Therefore, the use of the RLI in the study of the conservation status of the vascular flora along an altitudinal gradient could represent a novel and remarkable advance as an indicator of the global change threat factor on a detailed scale.

Keywords

Biodiversity Conservation status Elevation range Global change Mediterranean flora Threat factor 

Notes

Acknowledgements

This study has been made possible through the projects ‘Assessment, Monitoring and Applied Scientific Research for Ecological Restoration of Gypsum Mining Concessions (Majadas Viejas and Marylen) and Spreading of Results (ECORESGYP)’ sponsored by the company EXPLOTACIONES RÍO DE AGUAS S.L. (TORRALBA GROUP) and ‘Integrated study of coastal sands vegetation (AREVEG)’ sponsored by CEI·MAR. The authors, AJMF, and ESS were sponsored by the University of Almeria through the Program Plan Propio de Investigación y Transferencia, with a postdoctoral grant (Contrato Puente 2015) and a financial assistance for a stay abroad (Estancias en otros Centros de Investigación 2016). The authors would like to thank Beatrice Antolin and Andrew Taylor for reviewing the English translation of the text and the three anonymous reviewers for their interest.

Supplementary material

10531_2019_1705_MOESM1_ESM.docx (571 kb)
Supplementary material 1 (DOCX 570 kb)
10531_2019_1705_MOESM2_ESM.docx (149 kb)
Supplementary material 2 (DOCX 148 kb)
10531_2019_1705_MOESM3_ESM.docx (90 kb)
Supplementary material 3 (DOCX 89 kb)
10531_2019_1705_MOESM4_ESM.docx (86 kb)
Supplementary material 4 (DOCX 86 kb)
10531_2019_1705_MOESM5_ESM.docx (81 kb)
Supplementary material 5 (DOCX 81 kb)

References

  1. Aedo C, Medina L, Fernández-Albert M (2013) Species richness and endemicity in the Spanish vascular flora. Nord J Bot 31:478–488.  https://doi.org/10.1111/j.1756-1051.2012.00009.x CrossRefGoogle Scholar
  2. Anon (2017) Informe de Medio Ambiente en Andalucía 2017. Consejería de Medio Ambiente y Ordenación del Territorio, Junta de AndalucíaGoogle Scholar
  3. AV (Autoribus variis) (2000) Lista Roja de la flora vascular española (valoración según categorías UICN). Conserv Veg 6:11–38Google Scholar
  4. AV (Autoribus variis) (2010) Lista Roja de la flora vascular española. DGMNPF, MMA, MRM, SEBiCoP, MadridGoogle Scholar
  5. Baillie JEM, Collen B, Amin R, Akçakaya HR, Butchart SHM, Brummitt NA, Meagher TR, Ram M, Hilton-Taylor C, Mace GM (2008) Toward monitoring global biodiversity. Conserv Lett 1:18–26.  https://doi.org/10.1111/j.1755-263X.2008.00009.x CrossRefGoogle Scholar
  6. Bañares A, Blanca G, Güemes J, Moreno JC, Ortiz S (2003) Atlas y Libro Rojo de la Flora Vascular Amenazada de España. DGCN, MadridGoogle Scholar
  7. Bañares A, Blanca G, Güemes J, Moreno JC, Ortiz S (2006) Atlas y Libro Rojo de la Flora Vascular Amenazada de España. Adenda 2006. DGCN, MadridGoogle Scholar
  8. Bañares A, Blanca G, Güemes J, Moreno JC, Ortiz S (2008) Atlas y Libro Rojo de la Flora Vascular Amenazada de España. Adenda 2008. DGCN, MadridGoogle Scholar
  9. Bañares A, Blanca G, Güemes J, Moreno JC, Ortiz S (2010) Atlas y Libro Rojo de la Flora Vascular Amenazada de España. Adenda 2010. DGCN, MadridGoogle Scholar
  10. Barreno E, Bramwell D, Cabezudo B, Cardona MA, Costa M, Fernández Casas FJ, Fernández-Galiano E, Fernández Prieto JA, Gómez Campo C, Hernández Bermejo E, Heywood VH, Izco J, Llorens L, Molero Mesa J, Monserrat P, Rivas Martínez S, Sáenz Laín C, Santos A, Valdés B, Wildpret de la Torre W (1984) Listado de plantas endémicas, raras o amenazadas de España. Inf Ambient 3:49–72Google Scholar
  11. Barthlott W, Lauer W, Placke A (1996) Global distribution of species diversity in vascular plants: towards a world map of phytodiversity. Erdkunde 50:317–327.  https://doi.org/10.3112/erdkunde.1996.04.03 CrossRefGoogle Scholar
  12. Blanca G (1993) Origen de la flora de Andalucía. In: Valdés Bermejo E (ed) Introducción a la flora de Andalucía. AMA, Sevilla, pp 19–35Google Scholar
  13. Blanca G, Cueto M, Martínez-Lirola MJ, Molero-Mesa J (1998) Threatened vascular flora of Sierra Nevada (Southern Spain). Biol Conserv 85:269–285.  https://doi.org/10.1016/S0006-3207(97)00169-9 CrossRefGoogle Scholar
  14. Blanca G, Cabezudo B, Cueto M, Salazar C, Morales Torres C (2011) Flora Vascular de Andalucía Oriental. 2ª Edición corregida y aumentada. Universidades de Almería, Granada, Jaén y MálagaGoogle Scholar
  15. Brook BW, Sodhi NS, Bradshaw CJA (2008) Synergies among extinction drivers under global change. Trends Ecol Evol 23:453–460.  https://doi.org/10.1016/j.tree.2008.03.011 CrossRefGoogle Scholar
  16. Brummitt N, Bachman SP, Moat J (2008) Applications of the IUCN Red List: towards a global barometer for plant diversity. Endang Species Res 6:127–135.  https://doi.org/10.3354/esr00135 CrossRefGoogle Scholar
  17. Brummitt N, Bachman SP, Aletrari E, Chadburn H, Griffiths-Lee J, Lutz M, Moat J, Rivers MC, Syfert MM, Nic Lughadha EM (2015) The Sampled Red List Index for Plants, phase II: ground-truthing specimen-based conservation assessments. Phil Trans R Soc B 370(1662):20140015.  https://doi.org/10.1098/rstb.2014.0015 CrossRefPubMedGoogle Scholar
  18. Bubb PJ, Butchart SHM, Collen B, Dublin H, Kapos V, Pollock C, Stuart SN, Vié JC (2009) IUCN Red List index-guidance for national and regional use. International Union for Conservation of Nature, Gland, pp 1–11Google Scholar
  19. Buira A, Aedo C, Medina L (2017) Spatial patterns of the Iberian and Balearic endemic vascular flora. Biodivers Conserv 26(2):479–508.  https://doi.org/10.1007/s10531-016-1254-z CrossRefGoogle Scholar
  20. Butchart SHM, Stattersfield AJ, Bennun LA, Shutes SM, Akçakaya HR, Baillie JEM, Stuart SN, Mace GM (2004) Measuring global trends in the status of biodiversity: Red List Indices for birds. PLoS Biol 2:2294–2304.  https://doi.org/10.1371/journal.pbio.0020383 CrossRefGoogle Scholar
  21. Butchart SHM, Akçakaya HR, Chanson J, Baillie JEM, Collen B, Quader S, Turner WR, Amin R, Stuart SN, Hilton-Taylor C (2007) Improvements to the Red List Index. PLoS ONE 2(1):e140.  https://doi.org/10.1371/journal.pone.0000140 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Cabezudo B, Talavera S, Blanca G, Salazar C, Cueto M, Valdés B, Hernández-Bermejo JE, Herrera CM, Rodríguez-Hiraldo C, Navas D (2005) Lista Roja de la flora vascular de Andalucía. CMM, JA, SevillaGoogle Scholar
  23. Cañadas EM, Fenu G, Peñas J, Lorite J, Mattana E, Bacchetta G (2014) Hotspots within hotspots: endemic plant richness, environmental drivers, and implications for conservation. Biol Conserv 170:282–291.  https://doi.org/10.1016/j.biocon.2013.12.007 CrossRefGoogle Scholar
  24. Castroviejo S (ed) (1986–2018) Flora iberica, Vols. 1-21. Real Jardín Botánico-CSIC, Madrid [detailed list of volume editors and genera authors at www.floraiberica.org]
  25. Chapin FS, Körner C (1995) Arctic and Alpine Biodiversity. Patterns—causes and ecosystems consequences. Ecol Stud 113:45–62.  https://doi.org/10.1007/978-3-642-78966-3 CrossRefGoogle Scholar
  26. Chapman S, Mustin K, Renwick AR, Segan DB, Hole DG, Pearson RG, Watson JEM (2014) Publishing trends on climate change vulnerability in the conservation literature reveal a predominant focus on direct impacts and long time-scales. Div Distrib 20:1221–1228.  https://doi.org/10.1111/ddi.12234 CrossRefGoogle Scholar
  27. Costanza R, d’Arge R, Groot RD, Farber S, Grasso M, Hannon B, Limburg K, Naeem S, O’Neill RV, Paruelo J, Raskin RG, Sutton P, Belt MVD (1997) The value of the world’s ecosystem services and natural capital. Nature 387:253–260.  https://doi.org/10.1038/387253a0 CrossRefGoogle Scholar
  28. Domínguez Lozano F, Galicia Herbada D, Moreno Rivero L, Moreno Saiz JC, Sainz Ollero H (1996) Threatened plants in Peninsular and Balearic Spain: a report based on the EU Habitats Directive. Biol Conserv 76(2):123–133.  https://doi.org/10.1016/0006-3207(95)00107-7 CrossRefGoogle Scholar
  29. Edwards M, Richardson AJ (2004) Impact of climate change on marine pelagic phenology and trophic mismatch. Nature 430:881–884.  https://doi.org/10.1038/nature02808 CrossRefPubMedGoogle Scholar
  30. Farrier D, Whelan R, Mooney C (2007) Threatened species listing as a trigger for conservation action. Environ Sci Policy 10(3):219–229.  https://doi.org/10.1016/j.envsci.2006.12.001 CrossRefGoogle Scholar
  31. Fenu G, Bacchetta G, Giacanelli V, Gargano D, Montagnani C, Orsenigo S, Cogoni D, Rossi G, Conti F, Santangelo A, Pinna MS, Bartolucci F, Domina G, Oriolo G, Blasi C, Genovesi P, Abeli T, Ercole S (2017) Conserving plant diversity in Europe: outcomes, criticisms and perspectives of the Habitats Directive application in Italy. Biodivers Conserv 26:309–328.  https://doi.org/10.1007/s10531-016-1244-1 CrossRefGoogle Scholar
  32. Fernández Calzado MR, Molero Mesa J, Merzouki A, Casares Porcel M (2012) Vascular plant diversity and climate change in the upper zone of Sierra Nevada, Spain. Plant Biosyst 146(4):1044–1053.  https://doi.org/10.1080/11263504.2012.710273 CrossRefGoogle Scholar
  33. Franklin J, Serra-Diaz JM, Syphard AD, Regan HM (2016) Global change and terrestrial plant community dynamics. PNAS 113(14):3725–3734.  https://doi.org/10.1073/pnas.1519911113 CrossRefPubMedGoogle Scholar
  34. Gottfried M, Pauli H, Grabherr G (1998) Prediction of vegetation patterns at the limits of plant life: a new view of the alpine-nival ecotone. Arct Antarct Alp Res 30(3):207–221.  https://doi.org/10.2307/1551968 CrossRefGoogle Scholar
  35. Grabherr G, Gottfried M, Pauli H (2010) Climate change impacts in alpine environments. Geogr Compass 4(8):1133–1153.  https://doi.org/10.1111/j.1749-8198.2010.00356.x CrossRefGoogle Scholar
  36. Harter DEV, Irl SDH, Seo B, Steinbauer MJ, Gillespie R, Triantis KA, Fernández-Palacios JM, Beierkuhnlein C (2015) Impacts of global climate change on the floras of oceanic islands—projections, implications and current knowledge. Perspect Plant Ecol Syst 17(2):160–183.  https://doi.org/10.1016/j.ppees.2015.01.003 CrossRefGoogle Scholar
  37. Herrando S, Anton M (2013) Changes in the conservation status of breeding birds in Catalonia (NE Iberian Peninsula) in the period 2002-2012. Revista Catalana d’Ornitologia 29:20–34Google Scholar
  38. Hughes L (2000) Biological consequences of global warming: is the signal already apparent? Trends Ecol Evol 15:6–61.  https://doi.org/10.1016/S0169-5347(99)01764-4 CrossRefGoogle Scholar
  39. Hughes PD, Woodward JC (2008) Timing of glaciation in the Mediterranean mountains during the last cold stage. J Quat Sci 23:575–588.  https://doi.org/10.1002/jqs.1212 CrossRefGoogle Scholar
  40. IPCC (2018) Summary for Policymakers. In: Masson-Delmotte V, Zhai P, Pörtner HO, Roberts D, Skea J, Shukla PR, Pirani A, Moufouma-Okia W, Péan C, Pidcock R, Connors S, Matthews JBR, Chen Y, Zhou X, Gomis MI, Lonnoy E, Maycock T, Tignor M, Waterfield T (eds) Global warming of 1.5 °C. An IPCC Special Report on the impacts of global warming of 1.5 °C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty. World Meteorological Organization, Geneva, pp. 1–32Google Scholar
  41. IUCN (2017) Guidelines for using the IUCN Red List Categories and Criteria, version 13. Prepared by the Standards and Petitions Working Group of the IUCN SSC Biodiversity Assessments Sub-CommitteeGoogle Scholar
  42. Juslén A, Hyvärinen E, Virtanen LK (2012) Application of the Red-List Index at a national level for multiple species groups. Conserv Biol 27(2):398–406.  https://doi.org/10.1111/cobi.12016 CrossRefGoogle Scholar
  43. Juslén A, Pykälä J, Kuusela S, Kaila L, Kullberg J, Mattila J, Muona J, Saari S, Cardoso P (2016) Application of the Red List Index as an indicator of habitat change. Biodivers Conserv 25(3):569–585.  https://doi.org/10.1007/s10531-016-1075-0 CrossRefGoogle Scholar
  44. Körner C (2003) Alpine plant life: functional plant ecology of high mountain ecosystems. Springer, BerlinCrossRefGoogle Scholar
  45. Koyanagi TF, Furukawa T (2013) Nation-wide agrarian depopulation threatens semi-natural grassland species in Japan: sub-national application of the Red List Index. Biol Conserv 167:1–8CrossRefGoogle Scholar
  46. Kruckeberg AR, Rabinowitz D (1985) Biological aspects of endemism in higher plants. Annu Rev Ecol Evol Syst 16:447–479.  https://doi.org/10.1146/annurev.es.16.110185.002311 CrossRefGoogle Scholar
  47. Lewis OT, Senior MJM (2011) Assessing conservation status and trends for the world´s butterflies: the sampled Red List Index approach. J Insect Conserv 15:121–128.  https://doi.org/10.1007/s10841-010-9329-8 CrossRefGoogle Scholar
  48. Loidi J, Campos JA, Herrera M, Biurrun I, García-Mijangos I, García-Baquero G (2015) Eco-geographical factors affecting richness and phylogenetic diversity patterns of high-mountain flora in the Iberian Peninsula. Alp Bot 125(2):137–146.  https://doi.org/10.1007/s00035-015-0149-z CrossRefGoogle Scholar
  49. Lorite J (2016) An updated checklist of the vascular flora of Sierra Nevada (SE Spain). Phytotaxa 261:1–57.  https://doi.org/10.11646/17094 CrossRefGoogle Scholar
  50. Maclean IMD, Wilson RJ (2011) Recent ecological responses to climate change support predictions of high extinction risk. PNAS 108(30):12337–12342.  https://doi.org/10.1073/pnas.1017352108 CrossRefPubMedGoogle Scholar
  51. Martínez-Hernández F, Pérez-García FJ, Garrido-Becerra JA, Mendoza-Fernández AJ, Medina-Cazorla JM, Martínez-Nieto MI, Merlo ME, Mota JF (2011) The distribution of Iberian gypsophile flora as a criterion for conservation policy. Biodivers Conserv 206:1353–1364.  https://doi.org/10.1007/s10531-011-0031-2 CrossRefGoogle Scholar
  52. Médail F, Diadema K (2009) Glacial refugia influence plant diversity pattern in the Mediterranean Basin. J Biogeogr 36:1333–1345.  https://doi.org/10.1111/j.1365-2699.2008.02051.x CrossRefGoogle Scholar
  53. Médail F, Quézel P (1997) Hot-spots analysis for conservation of plant biodiversity in the Mediterranean basin. Ann Mo Bot Gard 84:112–127.  https://doi.org/10.2307/2399957 CrossRefGoogle Scholar
  54. Médail F, Quézel P (1999) Biodiversity hotspots in the Mediterranean basin: setting global conservation priorities. Conserv Biol 13:1510–1513.  https://doi.org/10.1046/j.1523-1739.1999.98467.x CrossRefGoogle Scholar
  55. Médail F, Verlaque R (1997) Ecological characteristics and rarity of endemic plants from southeast France and Corsica: implications for biodiversity conservation. Biol Conserv 80:269–271.  https://doi.org/10.1016/S0006-3207(96)00055-9 CrossRefGoogle Scholar
  56. Mendoza-Fernández AJ, Mota JF (2016) Red Lists versus nature protection acts: new analytical and numerical method to test threat trends. Biodivers Conserv 252:239–260.  https://doi.org/10.1007/s10531-015-1040-3 CrossRefGoogle Scholar
  57. Mendoza-Fernández A, Pérez-García FJ, Martínez-Hernández F, Medina-Cazorla JM, Garrido-Becerra JA, Merlo Calvente ME, Guirado Romero JS, Mota JF (2014) Threatened plants of arid ecosystems in the Mediterranean Basin: a case study of the south-eastern Iberian Peninsula. ORYX 48(4):548–554.  https://doi.org/10.1017/S0030605313000495 CrossRefGoogle Scholar
  58. Mendoza-Fernández A, Pérez-García FJ, Martínez-Hernández F, Salmerón-Sánchez E, Medina-Cazorla JM, Garrido-Becerra JA, Martínez-Nieto MI, Merlo ME, Mota JF (2015) Areas of endemism and threatened flora in a Mediterranean hotspot: Southern Spain. J Nat Conserv 23:35–44.  https://doi.org/10.1016/j.jnc.2014.08.001 CrossRefGoogle Scholar
  59. Molero Mesa J, Pérez Raya F, González-Tejero MR (1996) Catálogo y análisis florístico de la flora orófila de Sierra Nevada. Sierra Nevada, Conservación y Desarrollo Sostenible 2:271–276Google Scholar
  60. Molina-Venegas R, Aparicio A, Lavergne S, Arroyo J (2016) How soil and elevation shape local plant biodiversity in a Mediterranean hotspot. Biodivers Conserv 25(6):1133–1149.  https://doi.org/10.1007/s10531-016-1113-y CrossRefGoogle Scholar
  61. Moreno Saiz JC, Domínguez Lozano F, Marrero Gómez M, Bañares Baudet A (2015) Application of the Red List Index for conservation assessment of Spanish vascular plants. Conserv Biol 29(3):910–919.  https://doi.org/10.1111/cobi.12437 CrossRefGoogle Scholar
  62. Mota JF, Pérez-García FJ, Jiménez ML, Amate JJ, Peñas J (2002) Phytogeographical relationships among high mountain areas in the Baetic Ranges (South Spain). Global Ecol Biogeogr 11:497–504.  https://doi.org/10.1046/j.1466-822X.2002.00312.x CrossRefGoogle Scholar
  63. Mota JF, Cueto M, Merlo ME (eds) (2003) Flora amenazada de la provincia de Almería: una perspectiva desde la biología de la conservación. Monografías Ciencia y tecnología, AlmeríaGoogle Scholar
  64. Musarella CM, Mendoza-Fernández AJ, Mota JF, Alessandrini A, Bacchetta G, Brullo S, Caldarella O, Ciaschetti G, Conti F, Martino L, Falci A, Gianguzzi L, Guarino R, Manzi A, Minissale P, Montanari S, Pasta S, Peruzzi L, Podda L, Sciandrello S, Scuderi L, Troia A, Spampinato G (2018) Checklist of gypsophilous vascular flora in Italy. PhytoKeys 103:61–82.  https://doi.org/10.3897/phytokeys.103.25690 CrossRefGoogle Scholar
  65. Myers N, Mittermeier RA, Mittermeier CG, Fonseca GAB, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858.  https://doi.org/10.1038/35002501 CrossRefGoogle Scholar
  66. Orsenigo S, Montagnani C, Fenu G, Gargano D, Peruzzi L, Abeli T, Alessandrini A, Bacchetta G et al (2018) Red Listing plants under full national responsibility: extinction risk and threats in the vascular flora endemic to Italy. Biol Conserv 224:213–222.  https://doi.org/10.1016/j.biocon.2018.05.030 CrossRefGoogle Scholar
  67. Parmesan C, Yohe G (2003) A globally coherent fingerprint of climate change impacts across natural systems. Nature 421:37–42.  https://doi.org/10.1038/nature01286 CrossRefPubMedGoogle Scholar
  68. Pauli H, Gottfried M, Reiter K, Klettner C, Grabherr G (2007) Signals of range expansions and contractions of vascular plants in the high Alps: observations (1994-2004) at the GLORIA *master site Schrankogel, Tyrol, Austria. Glob Change Biol 13(1):147–156.  https://doi.org/10.1111/j.1365-2486.2006.01282.x CrossRefGoogle Scholar
  69. Pauli H, Gottfried M, Dullinger S, Abdaladze O, Akhalkatsi M, Alonso JLB, Coldea G, Dick J, Erschbamer B, Fernández Calzado MR, Ghosn D, Holten JI, Kanka R, Kazakis G, Kollar J, Larsson P, Moiseev P, Moiseev D, Molau U, Molero Mesa J, Nagy L, Pelino G, Puscas M, Rossi G, Stanisci A, Syverhuset AO, Theurillat JP, Tomaselli M, Unterluggauer P, Villar L, Vittoz P, Grabherr G (2012) Recent plant diversity changes on Europe’s mountain summits. Science 36:353–355.  https://doi.org/10.1126/science.1219033 CrossRefGoogle Scholar
  70. Pérez-García FJ, Medina-Cazorla JM, Martínez-Hernández F, Garrido-Becerra JA, Mendoza-Fernández AJ, Salmerón-Sánchez E, Mota JF (2012) Iberian Baetic endemic flora and the implications for a conservation policy. Ann Bot Fenn 49(1–2):43–54.  https://doi.org/10.5735/085.049.0106 CrossRefGoogle Scholar
  71. Pérez-García FJ, Merlo ME, Martínez-Hernández F, Medina-Cazorla JM, Mendoza-Fernández AJ, Garrido-Becerra JA, Salmerón-Sánchez E, Mota JF (2014) Syntaxa-area relationships, lessons from the vegetation of the Betic high mountain ranges (southern Spain). Phytocoenologia 44(3–4):309–323.  https://doi.org/10.1127/0340-269X/2014/0044-0583 CrossRefGoogle Scholar
  72. Pihl S, Flensted KN (2011) A Red List Index for breeding birds in Denmark in the period 1991–2009. Dansk Ornitol Foren Tidsskr 105:211–218Google Scholar
  73. Price MF, Barry RG (1997) Climate change. In: Messerli B, Ives JD (eds) Mountain of the world: a global priority. A contribution to Chapter 13 of Agenda 21. Parthenon, New York, pp 409–445Google Scholar
  74. Quayle JF, Ramsay LR, Fraser DF (2007) Trend in the status of breeding bird fauna in British Columbia, Canada, based on the IUCN Red List Index method. Conserv Biol 21:1241–1247.  https://doi.org/10.1111/j.1523-1739.2007.00753.x CrossRefPubMedGoogle Scholar
  75. Quézel P (1985) Definition of the Mediterranean region and the origin of its flora. In: Gomez-Campo C (ed) Plant conservation in the Mediterranean area. Geobotany 7, Dordrecht, pp 9–24Google Scholar
  76. Rivas-Martínez S, Díaz González TE, Fernández-González F, Izco J, Loidi J, Lousã M, Penas A (2002) Vascular plant communities of Spain and Portugal. Itiner Geobot 15:5–432Google Scholar
  77. Rodrigues ASL, Pilgrim JD, Lamoreux JF, Hoffmann M, Brooks TM (2006) The value of the IUCN Red List for conservation. Trends Ecol Evol 21:71–76.  https://doi.org/10.1016/j.tree.2005.10.010 CrossRefPubMedGoogle Scholar
  78. Rodrigues ASL, Brooks TM, Butchart SHM, Chanson J, Cox N et al (2014) Spatially explicit trends in the global conservation status of vertebrates. PLoS ONE 9(11):e113934.  https://doi.org/10.1371/journal.pone.0113934 CrossRefPubMedPubMedCentralGoogle Scholar
  79. Sarkar S (2005) Biodiversity and environmental philosophy: an introduction, (Cambridge Studies in Philosophy and Biology). Cambridge University Press, New York.  https://doi.org/10.1017/CBO9780511498558 CrossRefGoogle Scholar
  80. Stuart SN, Wilson EO, McNeely JA, Mittermeier RA, Rodríguez JP (2010) The barometer of life. Science 328:117.  https://doi.org/10.1126/science.1188606 CrossRefGoogle Scholar
  81. Szabo JK, Butchart SHM, Possingham HP, Garnett ST (2012) Adapting global biodiversity indicators to the national scale: a Red List Index for Australian birds. Biol Conserv 148:61–68.  https://doi.org/10.1016/j.biocon.2012.01.062 CrossRefGoogle Scholar
  82. Thomas CD, Cameron A, Green RE, Bakkenes M, Beaumont LJ, Collingham YC, Erasmus BFN, de Siqueira MF, Grainger A, Hannah L, Hughes L, Huntley B, van Jaarsveld AS, Midgley GF, Miles L, Ortega-Huerta MA, Townsend Peterson A, Phillips OL, Williams SE (2004) Extinction risk from climate change. Nature 427:145–148.  https://doi.org/10.1038/nature02121 CrossRefPubMedGoogle Scholar
  83. Thuiller W, Lavorel S, Araújo MB, Sykes MT, Prentice IC (2005) Climate change threats to plant diversity in Europe. PNAS 102(23):8245–8250.  https://doi.org/10.1073/pnas.0409902102 CrossRefPubMedGoogle Scholar
  84. Tittensor D, Walpole M, Hill SL, Boyce DG, Britten GL, Burgess ND, Visconti P (2014) A mid-term analysis of progress toward international biodiversity targets. Science 346:241–244.  https://doi.org/10.1126/science.1257484 CrossRefPubMedGoogle Scholar
  85. Valderrábano M, Gil T, Heywood V, de Montmollin B (eds) (2018) Conserving wild plants in the south and east Mediterranean region. IUCN, GlandGoogle Scholar
  86. Valdés B (1991) Andalusia and the Rif. Floristic links and common flora. Bot Chron 10:117–124Google Scholar
  87. Valdés B, Talavera S, Fernández Galiano E (1987) Flora de Andalucía Occidental I-III. Ketres Editores, BarcelonaGoogle Scholar
  88. Valle F, Mota J, Gómez-Mercado F (1987) Dinámica de la vegetación en el sureste de la Península Ibérica. Colloq Phytosoc 15:753–771Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Antonio J. Mendoza-Fernández
    • 1
    Email author
  • Francisco J. Pérez-García
    • 1
  • Fabián Martínez-Hernández
    • 1
  • Esteban Salmerón-Sánchez
    • 1
  • Agustín Lahora
    • 1
  • María E. Merlo
    • 1
  • Juan F. Mota
    • 1
  1. 1.Biology and Geology Department, CEI·MAR, CECOUALUniversity of AlmeriaAlmeríaSpain

Personalised recommendations