Biodiversity outcomes of payment for ecosystem services: lessons from páramo grasslands

  • Leah L. BremerEmail author
  • Kathleen A. Farley
  • Nathan DeMaagd
  • Esteban Suárez
  • Daisy Cárate Tandalla
  • Sebastián Vasco Tapia
  • Patricio Mena Vásconez
Original Paper
Part of the following topical collections:
  1. Biodiversity appreciation and engagement


As payment for ecosystem services (PES) programs grow around the world, so have concerns over whether a focus on ecosystem services will also protect biodiversity. Biodiverse Ecuadorian páramo grasslands have become a hotspot for PES in an effort to protect water supplies, sequester carbon, conserve biodiversity, and improve rural livelihoods. However, the outcomes of PES-incentivized land management, particularly burn exclusion, on plant communities and their associated ecosystem services remain poorly understood. To address this science-policy gap, we evaluated plant richness and number and cover of the ten major páramo growth forms in two study areas with chronosequences of burn exclusion. Both species richness and number of growth forms was highest in sites with intermediate times-since-last burn and the cover of tussock grasses—critical to protecting soils and maintaining hydrologic function—recovered within 3–6 years after fire at both study areas, suggesting that PES programs targeting hydrologic services do not need to exclude burning to ensure adequate vegetation cover over the long-term. However, shrub growth forms were slower to recover, indicating that conserving the plant composition characteristic of less disturbed páramos requires some protection from burning. Findings provide broad lessons for PES programs focused on both biodiversity and ecosystem services and point to the importance of clearly defining PES ecological goals since land-use prescriptions may differ depending on the management objective.


Land-use change Fire Andes Ecuador Ecosystem services Species richness 



This study would not have been possible without the support of many people. We are grateful for Dr. Stuart White and José Alvear and the community of Zuleta for permission to work on their land and for assistance throughout the fieldwork. We thank Will Anderson and the park guards of Sangay National Park, MWR, and Zuleta for field assistance and Doña Carmen and Don José María Colima and their family for field accommodations. Will Anderson created the maps and aerial photos in this paper. We thank Catherine Schloegel, Fundación Cordillera Tropical, EcoCiencia, and Fulbright Ecuador for institutional support. This work was supported by the Department of Geography at San Diego State University and the University of California, Santa Barbara, a Fulbright Student Grant, and the National Science Foundation, Grant No. 0851532. This is contributed paper # WRRC-CP-2019-14, Water Resources Research Center, University of Hawaiʻi at Mānoa.

Supplementary material

10531_2019_1700_MOESM1_ESM.pdf (104 kb)
Supplementary material 1 (PDF 104 kb)
10531_2019_1700_MOESM2_ESM.pdf (77 kb)
Supplementary material 2 (PDF 76 kb)
10531_2019_1700_MOESM3_ESM.pdf (85 kb)
Supplementary material 3 (PDF 84 kb)
10531_2019_1700_MOESM4_ESM.pdf (35 kb)
Supplementary material 4 (PDF 35 kb)


  1. Abell R, Asquith N, Boccaletti G, Bremer L, Chapin E, Erickson-Quiroz A, Higgins J, Johnson J, Kang S, Karres N, Lehner B (2017) Beyond the source: the environmental, economic and community benefits of source water protection. The Nature Conservancy, Arlington, VAGoogle Scholar
  2. Alvaer J (2011) La experiencia de la comuna Zuleta, provincia de Imbabura. In: Mena P, Castillo A, Flores S, Hofstede R, Josse C, Lasso S et al (eds) Páramo: Paisaje estudiado, habitado, manejado e institutionalizado. Abya Yala, Quito, pp. 209–214Google Scholar
  3. Bartoń K (2018) MuMIn: multi-model inference. R package version 1.40.4.
  4. Bates D, Maechler M, Bolker B, Walker S (2015) Fitting linear mixed-effects models using lme4. J Stat Softw 67(1):1–48CrossRefGoogle Scholar
  5. Bennett G, Ruef F (2016) Alliances for green infrastructure: state of watershed investments 2016. Forest Trends’ Ecosystem Services Marketplace, Washington, DCGoogle Scholar
  6. Bray J, Curtis C (1957) An ordination of upland forest communities of southern Wisconsin. Ecol Monogr 27:325–349CrossRefGoogle Scholar
  7. Bremer L, Farley K (2010) Does plantation forestry restore biodiversity or create green deserts? A synthesis of the effects of land-use transitions on plant species richness. Biodivers Conserv 19:3893–3915CrossRefGoogle Scholar
  8. Bremer LL, Farley KA, Lopez-Carr D (2014) What factors influence participation in Payment for Ecosystem Services programs? An evaluation of Ecuador’s SocioPáramo program. Land Use Policy 36:122–133CrossRefGoogle Scholar
  9. Bremer LL, Auerbach DA, Goldstein JH, Vogl AL, Shemie D, Kroeger T, Nelson JL, Benítez SP, Calvache A, Guimarães J, Herron C, Higgins J, Klemz C, León J, Sebastián J, Moreno PH, Nuñez F, Veiga F, Tiepolo G (2016a) One size does not fit all: natural infrastructure investments within the Latin American Water Funds Partnership. Ecosyst Serv 17:217–236CrossRefGoogle Scholar
  10. Bremer LL, Farley KA, Chadwick OA, Harden CP (2016b) Changes in carbon storage with land management promoted by payment for ecosystem services. Environ Conserv 43:397–406CrossRefGoogle Scholar
  11. Brockerhoff EG, Jactel H, Parrotta JA, Quine CP, Sayer J (2008) Plantation forests and biodiversity: oxymoron or opportunity? Biodivers Conserv 17:925–951CrossRefGoogle Scholar
  12. Bugalho MN, Caldeira MC, Pereira JS, Aronson J, Pausas JG (2011) Mediterranean cork oak savannas require human use to sustain biodiversity and ecosystem services. Front Ecol Environ 9:278–286CrossRefGoogle Scholar
  13. Buytaert W, Célleri R, De Bièvre B, Cisneros F, Wyseure G, Deckers J, Hofstede R (2006) Human impact on the hydrology of the Andean páramos. Earth Sci Rev 79:53–72CrossRefGoogle Scholar
  14. Buytaert W, Iniguez V, DeBiévre B (2007) The effects of afforestation and cultivation on water yield in the Andean páramo. For Ecol Manag 251:22–30CrossRefGoogle Scholar
  15. Colwell R (2006) EstimateS: Statistical estimation of species richness and shared species from samples. Version 7.5. – User's Guide and application.
  16. Connell JH (1978) Diversity in tropical rain forests and coral reefs—high diversity of trees and corals is maintained only in a non-equilibrium state. Science 199:1302–1310CrossRefGoogle Scholar
  17. Crawley MJ (2013) The R book, 2nd edn. Wiley, ChichesterGoogle Scholar
  18. Denevan WM (1992) The pristine myth: the landscape of the Americas in 1492. Ann Assoc Am Geogr 82:369–385CrossRefGoogle Scholar
  19. Di Pasquale G, Marziano M, Impagliazzo S, Lubritto C, De Natale A, Bader MY (2008) The Holocene treeline in the northern Andes (Ecuador): first evidence from soil charcoal. Palaeogeogr Palaeoclimatol Palaeoecol 259:17–34CrossRefGoogle Scholar
  20. Ellison K (2009) Ecosystem services—out of the wilderness? Front Ecol Environ 7:60–60CrossRefGoogle Scholar
  21. Farley KA, Bremer LL (2017) “Water Is Life”: local perceptions of páramo grasslands and land management strategies associated with payment for ecosystem services. Ann Am Assoc Geogr 4452:1–11Google Scholar
  22. Farley KA, Jobbagy EG, Jackson RB (2005) Effects of afforestation on water yield: a global synthesis with implications for policy. Glob Change Biol 11:1565–1576CrossRefGoogle Scholar
  23. Farley KA, Anderson WG, Bremer LL, Harden CP (2011) Compensation for ecosystem services: an evaluation of efforts to achieve conservation and development in Ecuadorian paramo grasslands. Environ Conserv 48:393–405CrossRefGoogle Scholar
  24. Farley KA, Bremer LL, Harden CP, Hartsig J (2013) Changes in carbon storage under alternative land uses in biodiverse Andean grasslands: implications for payment for ecosystem services. Conserv Lett 6:21–27CrossRefGoogle Scholar
  25. García-Amado LR, Pérez MR, Escutia FR, García SB, Mejía EC (2011) Efficiency of payments for environmental services: equity and additionality in a case study from a biosphere reserve in Chiapas, Mexico. Ecol Econ 70:2361–2368CrossRefGoogle Scholar
  26. García-Meneses PM, Ramsay PM (2014) Puya Hamata demography as an indicator of recent fire history in the páramo of el Ángel and Volcán Chiles, Ecuador–Colombia: La Demografía De Puya Hamata Como Indicador De La Historia De Fuegos Recientes En El Páramo De El Ángel y Volcán Chiles, Ecuador–Colombia. Caldasia 36(1):53–69CrossRefGoogle Scholar
  27. Harden CP, Hartsig J, Farley KA, Lee J, Bremer LL (2006) Effects of land-use change on water in Andean páramo grassland soils. Ann Assoc Am Geogr 103:375–384CrossRefGoogle Scholar
  28. Hartley MJ (2002) Rationale and methods for conserving biodiversity in plantation forests. For Ecol Manag 155:81–95CrossRefGoogle Scholar
  29. Hein L, Miller D, de Groot R (2013) Payments for ecosystem services and the financing of global biodiversity conservation. Curr Opin Environ Sustain 5:87–93CrossRefGoogle Scholar
  30. Hofstede RGM (1995) The effects of grazing and burning on soil and plant nutrient concentrations in Colombian Paramo Grasslands. Plant Soil 173:111–132CrossRefGoogle Scholar
  31. Holmes G, Sandbrook C, Fisher JA (2017) Understanding conservationists’ perspectives on the new-conservation debate. Conserv Biol 31:353–363CrossRefGoogle Scholar
  32. Horn SP (1998) Fire management and natural landscapes in the Chirripó Páramo, Chirripó National Park, Costa Rica. In: Zimmerer KS, Young KR (eds) Natures geography: new lessons for conservation in developing countries. University of Wisconsin Press, Madison, pp 125–146Google Scholar
  33. Hribljan JA, Suarez E, Katherine H, Lilleskov E, Chimner RA (2016) Peatland carbon stocks and accumulation rates in the Ecuadorian páramo. Wetl Ecol Manag 24:113–127CrossRefGoogle Scholar
  34. Ingram JC, Wilkie D, Clements T, McNab RB, Nelson F, Baur EH, Sachedina HT, Peterson DD, Foley CAH (2014) Evidence of Payments for Ecosystem Services as a mechanism for supporting biodiversity conservation and rural livelihoods. Ecosyst Serv 7:10–21CrossRefGoogle Scholar
  35. Jantz N, Behling H (2012) A Holocene environmental record reflecting vegetation, climate, and fire variability at the Paramo of Quimsacocha, southwestern Ecuadorian Andes. Veg Hist Archaeobot 21:169–185CrossRefGoogle Scholar
  36. Jokisch BD, Lair BM (2002) One last stand? Forests and change on Ecuador’s eastern cordillera. Geogr Rev 92:235–256CrossRefGoogle Scholar
  37. Keating PL (1998) Effects of anthropogenic disturbances on Paramo vegetation in Podocarpus National Park, Ecuador. Phys Geogr 19:221–238CrossRefGoogle Scholar
  38. Keating PL (2007) Fire ecology and conservation in the high tropical Andes: observations from northern Ecuador. J Lat Am Geogr 6:43–62CrossRefGoogle Scholar
  39. Kurashima N, Jeremiah J, Ticktin T (2017) I Ka Wā Ma Mua: the value of a historical ecology approach to ecological restoration in Hawai‘i. Pac Sci 71(4):437–456CrossRefGoogle Scholar
  40. Laegaard S (1992) Influence of fire in the grass páramo vegetation of Ecuador. In: Balslev H, Luteyn J (eds) Páramo: an Andean ecosystem under human influence. Academic, London, pp 151–170Google Scholar
  41. León-Yanez S (2011) La Flora de los Páramos Ecuatorianos. In: Mena P, Castillo A, Flores S, Hofstede R, Josse C, Lasso S et al (eds) Páramo: Paisaje estudiado, habitado, manejado institucionalizado. Selección de textos de las Serie Páramo, órgano de difusión del Grupo de Trabajo en Páramos del Ecuador (GTP). Abya Yala, QuitoGoogle Scholar
  42. Lindenmayer DB, Hulvey KB, Hobbs RJ, Colyvan M, Felton A, Possingham H, Steffen W, Wilson K, Youngentob K, Gibbons P (2012) Avoiding bio-perversity from carbon sequestration solutions. Conserv Lett 5:28–36CrossRefGoogle Scholar
  43. Mach ME, Martone RG, Chan KMA (2015) Human impacts and ecosystem services: insufficient research for trade-off evaluation. Ecosyst Serv 16:112–120CrossRefGoogle Scholar
  44. Matson E, Bart D (2013) Interactions among fire legacies, grazing and topography predict shrub encroachment in post-agricultural páramo. Landsc Ecol 28:1829–1840CrossRefGoogle Scholar
  45. Mena P, Medina G, Hofstede R (eds) (2001) Los páramos del Ecuador: Particularidades, Problemas y Perspectivas. Abya Yaya/Proyecto Páramo. QuitoGoogle Scholar
  46. Minaya-Maldonado VG (2017) Ecohydrology of the Andes páramo region. CR Press, LeidenCrossRefGoogle Scholar
  47. Morgan JW, Lunt ID (1999) Effects of time-since-fire on the tussock dynamics of a dominant grass (Themeda triandra) in a temperate Australian grassland. Biol Conserv 88:379–386CrossRefGoogle Scholar
  48. Mosquera GM, Lazo PX, Célleri R, Wilcox BP, Crespo P (2015) Runoff from tropical alpine grasslands increases with areal extent of wetlands. Catena 125:120–128CrossRefGoogle Scholar
  49. Myers N, Mittermeier RA, Mittermeier CG, da Fonseca GAB, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858CrossRefGoogle Scholar
  50. Naeem S, Ingram JC, Varga A, Agardy T, Barten P, Bennett G, Bloomgarden E, Bremer LL, Burkill P, Cattau M, Ching C, Colby M, Cook DC, Costanza R, DeClerck F, Freund C, Gartner T, Goldman-Benner R, Gunderson J, Jarrett D, Kinzig AP, Kiss A, Koontz A, Kumar P, Lasky JR, Masozera M, Meyers D, Milano F, Naughton-Treves L, Nichols E, Olander L, Olmsted P, Perge E, Perrings C, Polasky S, Potent J, Prager C, Quétier F, Redford K, Saterson K, Thoumi G, Vargas MT, Vickerman S, Weisser W, Wilkie D, Wunder S (2015) Get the science right when paying for nature’s services. Science 347:1206–1207CrossRefGoogle Scholar
  51. Nakagawa S, Schielzeth H (2013) A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods Ecol Evol 4(2):133–142. CrossRefGoogle Scholar
  52. Ochoa-Tocachi BF, Buytaert W, De Bievre B, Célleri R, Crespo P, Villacís M, Llerena CA, Acosta L, Villazón M, Guallpa M, Gil-Ríos J, Fuentes P, Olaya D, Villazón P, Rojas G, Arias S (2016) Impacts of land use on the hydrological response of tropical Andean catchments. Hydrol Process 30:4074–4089CrossRefGoogle Scholar
  53. Podwojewski P, Poulenard J, Zambrana T, Hofstede R (2002) Overgrazing effects on vegetation cover and properties of volcanic ash soil in the paramo of Llangahua and La Esperanza (Tungurahua, Ecuador). Soil Use Manag 18:45–55CrossRefGoogle Scholar
  54. Ponette-González AG, Marín-Spiotta E, Brauman KA, Farley KA, Weathers KC, Young K (2014) Hydrologic connectivity in the high-elevation tropics: heterogeneous responses to land change. Bioscience 64(2):92–104CrossRefGoogle Scholar
  55. Poulenard J, Podwojewski P, Janeau JL, Collinet J (2001) Runoff and soil erosion under rainfall simulation of Andisols from the Ecuadorian páramo: effect of tillage and burning. CATENA 45:185–207CrossRefGoogle Scholar
  56. Ramsay PM (2014) Giant rosette plant morphology as an indicator of recent fire history in Andean páramograsslands. Ecol Indic 45:37–44CrossRefGoogle Scholar
  57. Ramsay PM, Oxley ERB (1996) Fire temperatures and postfire plant community dynamics in Ecuadorian grass paramo. Vegetatio 124:129–144Google Scholar
  58. Ramsay PM, Oxley ERB (1997) The growth form composition of plant communities in the Ecuadorian paramos. Plant Ecol 131:173–192CrossRefGoogle Scholar
  59. Reyers B, Polasky S, Tallis H, Mooney HA, Larigauderie A (2012) Finding common ground for biodiversity and ecosystem services. Bioscience 62:503–507CrossRefGoogle Scholar
  60. Robbins P, Chhatre A, Karanth K (2015) Political ecology of commodity agroforests and tropical biodiversity. Conserv Lett 8:77–85CrossRefGoogle Scholar
  61. Rodriguez F, Behling H (2011) Late Holocene vegetation, fire, climate and upper forest line dynamics in the Podocarpus National Park, southeastern Ecuador. Veg Hist Archaeobot 20:1–14CrossRefGoogle Scholar
  62. Salzman J, Bennett G, Carroll N, Goldstein A, Jenkins M (2018) The global status and trends of Payments for Ecosystem Services. Nat Sustain 1:136–144CrossRefGoogle Scholar
  63. Sklenar P, Ramsay PM (2001) Diversity of zonal paramo plant communities in Ecuador. Divers Distrib 7:113–124CrossRefGoogle Scholar
  64. Suarez E (2013) Integrad ecológica frente a salud ecosistémica: reflexiones sobre enfoques de conservación en ecosistemas de páramo. In: Gente y Ambient de Páramo: Realidades y Perspectivas en el Ecuador. EcoCiencia-Abya Yala, Quito, pp. 39–46Google Scholar
  65. Suarez E, Medina G (2001) Vegetation structure and soil properties in Ecuadorian paramo grasslands with different histories of burning and grazing. Arct Antarct Alp Res 33:158–164Google Scholar
  66. Uys RG, Bond WJ, Everson TM (2004) The effect of different fire regimes on plant diversity in southern African grasslands. Biol Conserv 118:489–499CrossRefGoogle Scholar
  67. Valencia J, Lassaletta L, Velazquez E, Nicolau JM, Gomez-Sal A (2013) Factors controlling compositional changes in a northern Andean Paramo (La Rusia, Colombia). Biotropica 45:18–26CrossRefGoogle Scholar
  68. Valkó O, Deák B, Török P, Kelemen A, Miglécz T, Tóth K, Tóthmérész B (2016) Abandonment of croplands: problem or chance for grassland restoration? Case studies from Hungary. Ecosyst Health Sustain 2(2):e01208CrossRefGoogle Scholar
  69. White S (2013) Grass páramo as hunter-gatherer landscape. Holocene 23:898–915CrossRefGoogle Scholar
  70. Zuur A, Ieno EN, Walker N, Saveliev AA, Smith GM (2009) Mixed effects models and extensions in ecology. R. Springer, New YorkCrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.University of Hawaiʻi Economic Research OrganizationUniversity of Hawaiʻi at MānoaHonoluluUSA
  2. 2.Water Resources Research CenterUniversity of Hawaiʻi at MānoaHonoluluUSA
  3. 3.Department of GeographySan Diego State UniversitySan DiegoUSA
  4. 4.Economics DepartmentUniversity of Hawaiʻi at MānoaHonoluluUSA
  5. 5.Colegio de Ciencias Biológicas y AmbientalesUniversidad San Francisco de QuitoQuitoEcuador
  6. 6.QCA HerbariumPontifica Universidad Católica del EcuadorQuitoEcuador
  7. 7.Agroecology, Georg-August-University GöttingenGottinghamGermany
  8. 8.DSR Biología & InvestigaciónCuencaEcuador
  9. 9.Water Resources Management GroupWageningen UniversityWageningenThe Netherlands

Personalised recommendations