Advertisement

The effects of habitat loss on bat-fruit networks

  • Rafael S. Laurindo
  • Roberto Leonan M. Novaes
  • Jeferson Vizentin-Bugoni
  • Renato Gregorin
Original Paper

Abstract

Habitat loss and fragmentation typically lead to species loss and, consequently, changes in the structure and stability of interaction networks. These changes may lead to important limitation of crucial ecosystems services such as seed dispersal. Here, we compared the spatial structure and species composition of bat-fruit interaction networks in continuous and fragmented forests based on the compilation of 14 datasets from the highly diverse and threatened Atlantic Forest sites in Brazil. As predicted, the number of bat-dispersed species was reduced in fragmented forests. Surprisingly, in both continuous and fragmented forests, bat-fruit networks were nested and modular and presented high complementary specialization. Bat species from genera Artibeus, Carollia, and Sturnira, as well as five plant genera (Cecropia, Ficus, Piper, Solanum, and Vismia) played a central role in both continuous and fragmented forests, revealing small effects of habitat loss on the phylogenetic identity of core species. These bats are considerably tolerant to habitat loss and may support seed dispersal of they preferred plants also in fragmented forests, which explains the similarities of the networks between continuous and fragmented forests. In addition, these key plants provide food resources continuously throughout the year, which facilitates the persistence of seed disperser bats year-round in the community. Although our results indicate that habitat loss had little influence on the structure of the bat-fruit interactions, we evidenced that fragmentation reduces the number of resources consumed and dispersed by bats, which may have negative impacts on forest dynamics and ecosystem functioning.

Keywords

Atlantic rainforest Habitat disturbance Interaction networks Species roles 

Notes

Acknowledgements

RSL and RLMN are grateful to the Coordination for the Improvement of Higher Education Personnel (CAPES, Brazil) for the PhD scholarships. We thank Stephen Tyndel for valuable suggestions on the manuscript.

Supplementary material

10531_2018_1676_MOESM1_ESM.doc (460 kb)
Supplementary material 1 (DOC 460 kb)

References

  1. Aguiar LMS, Marinho-Filho JS (2007) Bat frugivory in a remnant of southeastern Brazilian Atlantic forest. Acta Chiropt 9:251–260.  https://doi.org/10.3161/1733-5329(2007)9[251:BFIARO]2.0.CO;2 CrossRefGoogle Scholar
  2. Albrecht J, Berens DG, Jaroszewicz B, Selva N, Brandl R, Farwig N (2014) Correlated loss of ecosystem services in coupled mutualistic networks. Nat Commun 5:a3810.  https://doi.org/10.1038/ncomms4810 CrossRefGoogle Scholar
  3. Almeida-Neto M, Ulrich W (2011) A straightforward computational approach for measuring nestedness using quantitative matrices. Environ Model Softw 26:173–178.  https://doi.org/10.1016/j.envsoft.2010.08.003 CrossRefGoogle Scholar
  4. Andrade TY, Thies W, Rogeri PK, Kalko EK, Mello MA (2013) Hierarchical fruit selection by Neotropical leaf-nosed bats (Chiroptera: Phyllostomidae). J Mammal 94:1094–1101.  https://doi.org/10.1644/12-MAMM-A-244.1 CrossRefGoogle Scholar
  5. Arroyo-Rodríguez V, Rös M, Escobar F, Melo FP, Santos BA, Tabarelli M, Chazdon R (2013) Plant β-diversity in fragmented rain forests: testing floristic homogenization and differentiation hypotheses. J Ecol 101:1449–1458.  https://doi.org/10.1073/pnas.1633576100 CrossRefGoogle Scholar
  6. Bascompte J, Jordano P, Melián CJ, Olesen JM (2003) The nested assembly of plant–animal mutualistic networks. Proc Natl Acad Sci USA 100:9383–9387.  https://doi.org/10.1111/1365-2745.12153 CrossRefPubMedGoogle Scholar
  7. Bastolla U, Fortuna MA, Pascual-Garcia A, Ferrera A, Luque B, Bascompte J (2009) The architecture of mutualistic networks minimizes competition and increases biodiversity. Nature 458:1018–1020.  https://doi.org/10.1038/nature07950 CrossRefPubMedGoogle Scholar
  8. Bezerra EL, Machado IC, Mello MA (2009) Pollination networks of oil-flowers: a tiny world within the smallest of all worlds. J Anim Ecol 78:1096–1101.  https://doi.org/10.1111/j.1365-2656.2009.01567.x CrossRefPubMedGoogle Scholar
  9. Blüthgen N, Klein AM (2011) Functional complementarity and specialisation: the role of biodiversity in plant–pollinator interactions. Basic Appl Ecol 12:282–291.  https://doi.org/10.1016/j.baae.2010.11.001 CrossRefGoogle Scholar
  10. Blüthgen N, Menzel F, Blüthgen N (2006) Measuring specialization in species interaction networks. BMC Ecol 6:a9.  https://doi.org/10.1186/1472-6785-6-9 CrossRefGoogle Scholar
  11. Bomfim JA, Guimarães PR, Peres CA, Carvalho G, Cazetta E (2018) Local extinctions of obligate frugivores and patch size reduction disrupt the structure of seed dispersal networks. Ecography.  https://doi.org/10.1111/ecog.03592 CrossRefGoogle Scholar
  12. Brito JEC, Gazarini J, Zawadzki CH (2010) Abundância e frugivoria da quiropterofauna (Mammalia, Chiroptera) de um fragmento no noroeste do Estado do Paraná, Brasil. Acta Scient Biol Sci 32:265–271.  https://doi.org/10.4025/actascibiolsci.v32i3.5351 CrossRefGoogle Scholar
  13. Carvalho MCD (2008) Frugivoria por morcegos em Floresta Estacional Semidecidua: dieta, riqueza de espécies e germinação de sementes após passagem pelo sistema digestivo. Dissertation. Universidade Estadual de São PauloGoogle Scholar
  14. Christianou M, Ebenman B (2005) Keystone species and vulnerable species in ecological communities: strong or weak interactors? J Theor Biol 235:95–103.  https://doi.org/10.1016/j.jtbi.2004.12.022 CrossRefPubMedGoogle Scholar
  15. Coelho GC, Rigo MDS, Libardoni JB, Oliveira RD, Benvenuti-Ferreira G (2011) Understory structure in two successional stages of a Semi-deciduous Seasonal Forest remnant of Southern Brazil. Biota Neotrop 11(3):63–74.  https://doi.org/10.1590/S1676-06032011000300004 CrossRefGoogle Scholar
  16. Costa FV, Mello MA, Bronstein JL, Guerra TJ, Muylaert RL, Leite AC, Neves FS (2016) Few Ant species play a central role linking different plant resources in a network in rupestrian grasslands. PLoS ONE 11(12):e0167161.  https://doi.org/10.1371/journal.pone.0167161 CrossRefPubMedPubMedCentralGoogle Scholar
  17. Dalsgaard B, Schleuning M, Maruyama PK et al (2017) Opposed latitudinal patterns of network-derived and dietary specialization in avian plant–frugivore interaction systems. Ecography 40:1395–1401.  https://doi.org/10.1111/ecog.02604 CrossRefGoogle Scholar
  18. Dáttilo W, Guimarães PR, Izzo TJ (2013) Spatial structure of ant–plant mutualistic networks. Oikos 122:1643–1648.  https://doi.org/10.1111/j.1600-0706.2013.00562.x CrossRefGoogle Scholar
  19. Dormann CF, Strauss R (2014) A method for detecting modules in quantitative bipartite networks. Meth Ecol Evol 5:90–98.  https://doi.org/10.1111/2041-210X.12139 CrossRefGoogle Scholar
  20. Dormann CF, Fründ J, Blüthgen N, Gruber B (2009) Indices, graphs and null models: analyzing bipartite ecological networks. Open Ecol J 2:7–24.  https://doi.org/10.2174/1874213000902010007 CrossRefGoogle Scholar
  21. Faria DM (1996) Uso de recursos alimentares por morcegos filostomídeos fitófagos na Reserva de Santa Genebra, Campinas, São Paulo. Dissertation, Universidade Estadual de CampinasGoogle Scholar
  22. Fayle TM, Edwards DP, Foster WA, Yusah KM, Turner EC (2015) An ant–plant by-product mutualism is robust to selective logging of rain forest and conversion to oil palm plantation. Oecologia 178:441–450.  https://doi.org/10.1007/s00442-014-3208-z CrossRefPubMedPubMedCentralGoogle Scholar
  23. Ferreira DF, Rocha R, López-Baucells A, Farneda FZ, Carreiras J, Palmeirim JM, Meyer CF (2017) Season-modulated responses of Neotropical bats to forest fragmentation. Ecol Evol 7:4059–4071.  https://doi.org/10.1002/ece3.3005 CrossRefPubMedPubMedCentralGoogle Scholar
  24. Fleming TH, Kress WJ (2013) The ornaments of life: coevolution and conservation in the tropics. University of Chicago Press, ChicagoCrossRefGoogle Scholar
  25. Fleming TH, Venable DL, Herrera LGM (1993) Opportunism vs. specialization: the evolution of dispersal strategies in fleshy-fruited plants. Vegetatio 107:107–120.  https://doi.org/10.1007/BF00052215 CrossRefGoogle Scholar
  26. Fortuna MA, Bascompte J (2006) Habitat loss and the structure of plant-animal mutualistic networks. Ecol Lett 9:281–286.  https://doi.org/10.1111/j.1461-0248.2005.00868.x CrossRefPubMedGoogle Scholar
  27. Garcia QS, Rezende JLP, Aguiar LMS (2000) Seed dispersal by bats in a disturbed area of southeastern Brazil. Rev Biol Trop 48:125–128Google Scholar
  28. Gomes LAC (2013) Morcegos Phyllostomidae (Mammalia, Chiroptera) em um remanescente de Floresta Atlântica no sudeste do Brasil: composição de espécies, sazonalidade e frugivoria. Dissertation, Universidade Federal Rural do Rio de JaneiroGoogle Scholar
  29. Gómez JM, Verdú M, Perfectti F (2010) Ecological interactions are evolutionarily conserved across the entire tree of life. Nature 465(7300):918.  https://doi.org/10.1038/nature09113 CrossRefPubMedGoogle Scholar
  30. Green RE, Cornell SJ, Scharlemann JP, Balmford A (2005) Farming and the fate of wild nature. Science 307:550–555.  https://doi.org/10.1126/science.1106049 CrossRefPubMedGoogle Scholar
  31. Guariguata MR, Ostertag R (2001) Neotropical secondary forest succession: changes in structural and functional characteristics. Forest Ecol Manag 148:185–206.  https://doi.org/10.1016/S0378-1127(00)00535-1 CrossRefGoogle Scholar
  32. Hayashi MM (1996) Morcegos frugívoros em duas áreas alteradas da fazenda Lageado, Botucatu, Estado de São Paulo. Dissertation, Universidade Estadual Paulista Júlio de Mesquita FilhoGoogle Scholar
  33. Janzen DH (1974) The deflowering of Central America. Nat Hist 83:48–53Google Scholar
  34. Jordano P (2000) Fruits and frugivory. In: Fenner M (ed) Seeds: the ecology of regeneration in plant communities. CABI, Wallingford, pp 125–166CrossRefGoogle Scholar
  35. Laurindo RS, Gregorin R, Tavares DC (2017) Effects of biotic and abiotic factors on the temporal dynamic of bat-fruit interactions. Acta Oecol 83:38–47CrossRefGoogle Scholar
  36. Lima MM, Mariano-Neto E (2014) Extinction thresholds for Sapotaceae due to forest cover in Atlantic Forest landscapes. Forest Ecol Manag 312:260–270.  https://doi.org/10.1016/j.foreco.2013.09.003 CrossRefGoogle Scholar
  37. Lima IP, Nogueira MR, Monteiro LR, Peracchi AL (2016) Frugivoria e dispersão de sementes por morcegos na Reserva Natural Vale, Sudeste do Brasil. In: Rolim SG, Menezes LFT, Srbek-Araujo AC (eds) Floresta Atlântica de Tabuleiro: diversidade e endemismos na Reserva Natural Vale. Editora Rupestre, pp 433–452Google Scholar
  38. Lobova TA, Geiselman CK, Mori SA (2009) Seed dispersal by bats in the Neotropics. New York Botanical Garden Press, Ney York CityGoogle Scholar
  39. Marinho-Filho JS (1991) The coexistence of two frugivorous bat species and the phenology of their food plants in Brazil. J Trop Ecol 7:59–67.  https://doi.org/10.1017/S0266467400005083 CrossRefGoogle Scholar
  40. Mello MAR, Marquitti FMD, Guimarães PR, Kalko EKV, Jordano P, Aguiar MAM (2011) The modularity of seed dispersal: differences in structure and robustness between bat–and bird–fruit networks. Oecologia 167:131–140.  https://doi.org/10.1007/s00442-011-1984-2 CrossRefPubMedGoogle Scholar
  41. Mello RDM, Nobre PH, Manhaes MA, Pereira LC (2014) Frugivory by Phyllostomidae bats in a montane Atlantic Forest, southeastern Minas Gerais, Brazil. Ecotropica 20:65–73Google Scholar
  42. Memmott J, Waser NM, Price MV (2004) Tolerance of pollination networks to species extinctions. Proc R Soc B 271:2605–2611.  https://doi.org/10.1098/rspb.2004.2909 CrossRefPubMedGoogle Scholar
  43. Menke S, Böhning-Gaese K, Schleuning M (2012) Plant–frugivore networks are less specialized and more robust at forest–farmland edges than in the interior of a tropical forest. Oikos 121:1553–1566.  https://doi.org/10.1111/j.1600-0706.2011.20210.x CrossRefGoogle Scholar
  44. Morris RJ (2010) Anthropogenic impacts on tropical forest biodiversity: a network structure and ecosystem functioning perspective. Philos Trans R Soc B 265:3709–3718.  https://doi.org/10.1098/rstb.2010.0273 CrossRefGoogle Scholar
  45. Munster LC (2008) Dieta de morcegos frugívoros (Chiroptera, Phyllostomidae) na Reserva Natural do Salto Morato. Dissertation, Universidade Federal do ParanáGoogle Scholar
  46. Muylaert RL, Stevens RD, Ribeiro MC (2016) Threshold effect of habitat loss on bat richness in cerrado-forest landscapes. Ecol Appl 26:1854–1867.  https://doi.org/10.1890/15-1757.1 CrossRefPubMedGoogle Scholar
  47. Myers N, Mittermeier RA, Mittermeier CG, Fonseca GA, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858.  https://doi.org/10.1038/35002501 CrossRefPubMedGoogle Scholar
  48. Newbold T, Scharlemann JP, Butchart SH, Şekercioğlu ÇH, Alkemade R, Booth H, Purves DW (2013) Ecological traits affect the response of tropical forest bird species to land-use intensity. Proc R Soc B 280:e20122131.  https://doi.org/10.1098/rspb.2012.2131 CrossRefGoogle Scholar
  49. Oliveira HF, Camargo NF, Gager Y, Aguiar LM (2017) The response of bats (Mammalia: Chiroptera) to habitat modification in a Neotropical savannah. Trop Conserv Sci 10:1–14.  https://doi.org/10.1177/1940082917697263 CrossRefGoogle Scholar
  50. Palacio RD, Valderrama-Ardila C, Kattan GH (2016) Generalist species have a central role in a highly diverse plant–frugivore network. Biotropica 48:349–355.  https://doi.org/10.1111/btp.12290 CrossRefGoogle Scholar
  51. Passmore HA, Bruna EM, Heredia SM, Vasconcelos HL (2012) Resilient networks of ant-plant mutualists in Amazonian forest fragments. PLoS ONE 7:e40803.  https://doi.org/10.1371/journal.pone.0040803 CrossRefPubMedPubMedCentralGoogle Scholar
  52. Passos FC, Silva WR, Pedro WA, Bonin MR (2003) Frugivoria em morcegos (Mammalia, Chiroptera) no Parque Estadual Intervales, sudeste do Brasil. Rev Bras Zool 20:511–517.  https://doi.org/10.1590/S0101-81752003000300024 CrossRefGoogle Scholar
  53. Pessoa MS, Rocha-Santos L, Talora DC, Faria D, Mariano-Neto E, Hambuckers A, Cazetta E (2017) Fruit biomass availability along a forest cover gradient. Biotropica 49(1):45–55.  https://doi.org/10.1111/btp.12359 CrossRefGoogle Scholar
  54. R Development Core Team (2008) R: A language and environment for statistical computing. R Foundation for Statistical ComputingGoogle Scholar
  55. Revilla TA, Encinas-Viso F, Loreau M (2015) Robustness of mutualistic networks under phenological change and habitat destruction. Oikos 124:22–32.  https://doi.org/10.1111/oik.01532 CrossRefGoogle Scholar
  56. Ribeiro MC, Metzger JP, Martensen AC, Ponzoni FJ, Hirota MM (2009) The Brazilian Atlantic Forest: how much is left, and how is the remaining forest distributed? Implications for conservation. Biol Conserv 142:1141–1153.  https://doi.org/10.1016/j.biocon.2009.02.021 CrossRefGoogle Scholar
  57. Rocha R, López-Baucells A, Farneda FZ, Groenenberg M, Bobrowiec PE, Cabeza M, Palmeirim JM, Meyer CF (2017) Consequences of a large-scale fragmentation experiment for Neotropical bats: disentangling the relative importance of local and landscape-scale effects. Landsc Ecol 32:31–45.  https://doi.org/10.1007/s10980-016-0425-3 CrossRefGoogle Scholar
  58. Saldaña-Vázquez RA, Sosa VJ, Iñiguez-Dávalos LI, Schondube JE (2013) The role of extrinsic and intrinsic factors in Neotropical fruit bat–plant interactions. J Mammal 94:632–639.  https://doi.org/10.1644/11-MAMM-A-370.1 CrossRefGoogle Scholar
  59. Silva JM, Tabarelli M (2000) Tree species impoverishment and the future flora of the Atlantic forest of northeast Brazil. Nature 404:72–74.  https://doi.org/10.1038/35003563 CrossRefGoogle Scholar
  60. Silveira M, Trevelin L, Port-Carvalho M, Godoi S, Mandetta EN, Cruz-Neto AP (2011) Frugivory by phyllostomid bats (Mammalia: Chiroptera) in a restored area in Southeast Brazil. Acta Oecol 37:31–36.  https://doi.org/10.1016/j.actao.2010.11.003 CrossRefGoogle Scholar
  61. Souza VC, Lorenzi H (2008) Botânica sistemática: guia ilustrado para identificação das famílias de Angiospermas da flora brasileira. Instituto Plantarum, Nova OdessaGoogle Scholar
  62. Spiesman BJ, Inouye BD (2013) Habitat loss alters the architecture of plant–pollinator interaction networks. Ecology 94:2688–2696.  https://doi.org/10.1890/13-0977.1 CrossRefPubMedGoogle Scholar
  63. Staggemeier VG, Galetti M (2007) Impacto humano afeta negativamente a dispersão de sementes de frutos ornitocóricos: uma perspectiva global. Rev Bras Ornitol 15:281–287Google Scholar
  64. Tavares VC, Perini FA, Lombardi JA (2007) The bat communities (Chiroptera) of the Parque Estadual do Rio Doce, a large remnant of Atlantic Forest in southeastern Brazil. Lundiana 8:35–47Google Scholar
  65. Traveset A, Castro-Urgal R, Rotllàn-Puig X, Lázaro A (2017) Effects of habitat loss on the plant–flower visitor network structure of a dune community. Oikos 127(1):45–55.  https://doi.org/10.1111/oik.04154 CrossRefGoogle Scholar
  66. Tscharntke T, Klein AM, Kruess A, Steffan-Dewenter I, Thies C (2005) Landscape perspectives on agricultural intensification and biodiversity–ecosystem service management. Ecol Lett 8:857–874.  https://doi.org/10.1111/j.1461-0248.2005.00782.x CrossRefGoogle Scholar
  67. Tylianakis JM, Laliberté E, Nielsen A, Bascompte J (2010) Conservation of species interaction networks. Biol Conserv 143:2270–2279.  https://doi.org/10.1016/j.biocon.2009.12.004 CrossRefGoogle Scholar
  68. Uriarte M, Anciães M, Silva MT, Rubim P, Johnson E, Bruna EM (2011) Disentangling the drivers of reduced long-distance seed dispersal by birds in an experimentally fragmented landscape. Ecology 92:924–937.  https://doi.org/10.1890/10-0709.1 CrossRefPubMedGoogle Scholar
  69. Van der Pijl L (1972) Principles of dispersal in higher plants. Springer-Verlag, HeidelbergCrossRefGoogle Scholar
  70. Vázquez DP, Melián CJ, Williams NM, Blüthgen N, Krasnov BR, Pouli R (2007) Species abundance and asymmetric interaction strength in ecological networks. Oikos 116(7):1120–1127.  https://doi.org/10.1111/j.0030-1299.2007.15828.x CrossRefGoogle Scholar
  71. Zapata-Mesa N, Montoya-Bustamante S, Murillo-García OE (2017) Temporal variation in bat-fruit interactions: foraging strategies influence network structure over time. Acta Oecol 85:9–17.  https://doi.org/10.1016/j.actao.2017.09.003 CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Departamento de BiologiaUniversidade Federal de LavrasLavrasBrazil
  2. 2.Instituto de Biologia, Programa de Pós-Graduação em Biodiversidade e Biologia EvolutivaUniversidade Federal do Rio de JaneiroRio de JaneiroBrazil
  3. 3.Department of Natural Resources and Environmental SciencesUniversity of Illinois at Urbana-ChampaignUrbanaUSA

Personalised recommendations