Advertisement

Biodiversity and Conservation

, Volume 28, Issue 2, pp 467–499 | Cite as

Catch and bycatch captured by tropical tuna purse-seine fishery in whale and whale shark associated sets: comparison with free school and FAD sets

  • Lauriane EscalleEmail author
  • Daniel Gaertner
  • Pierre Chavance
  • Hilario Murua
  • Monique Simier
  • Pedro Jose Pascual-Alayón
  • Frédéric Ménard
  • Jon Ruiz
  • Francisco Abascal
  • Bastien Mérigot
Original Paper
Part of the following topical collections:
  1. Coastal and marine biodiversity

Abstract

In an ecosystem approach to fisheries management (EAFM) framework of the tuna purse-seine fishery, the assessment of target species, but also that of bycatch species, is essential. In the Atlantic and Indian oceans, purse-seine nets are sometimes set around tuna schools associated with whale sharks and baleen whales, although less frequently than around free-swimming tuna schools or those associated with fish aggregating devices (FAD). However, knowledge on the targeted catch and bycatch in these megafauna associated fishing sets is still relatively limited. Therefore, the aims of this study were to assess species and size composition of the target tuna species, as well as the diversity of bycatch species in whale and whale shark associated sets. Whale associated sets were found to be very similar to free school sets in terms of tuna catch (large yellowfin tuna), bycatch occurrence (presence in half the sets) and species assemblage (alpha and beta diversity). Whale shark associated sets were intermediate between FAD and free school sets, with tuna catch (skipjack and juvenile yellowfin) closer to FAD than to free school sets. However, the presence of large yellowfin, the bycatch composition (with almost no finfish, abundantly captured in FAD sets) and the species assemblage showed similarity with free school sets. This study highlights the need for an EAFM in the tuna purse-seine fishery by providing knowledge on pelagic multi-specific catches and bycatches.

Keywords

Megafauna Bycatch Diversity Catch composition Tuna purse-seine fishery Ecosystem approach to fisheries management 

Notes

Acknowledgements

The authors are grateful to the skippers, the European purse-seiner associations (ORTHONGEL, OPAGAC and ANABAC) for their cooperation, and to Terres Australes et Antarctiques Françaises (TAAF) involved in the logbook data collection, which is supported by the French and Spanish National Fisheries agencies and research institutes (IRD/IEO/AZTI). We would also like to thank the teams of the ‘Observatoire Thonier’ (IRD), the ‘Centro Costero de Canarias’ (IEO) and AZTI Tecnalia for providing logbook and scientific observer data. L. Escalle was funded by a PhD grant from the University of Montpellier. This is contribution 888 from AZTI-Tecnalia Marine Research Division. The manuscript has been proof-read and the English corrected by Michael Paul. We thank two anonymous Reviewers for their constructive comments on an earlier version of the manuscript.

References

  1. Amandè MJ, Ariz J, Chassot E, Delgado de Molina A, Gaertner D, Murua H, Pianet R, Ruiz J, Chavance P (2010) Bycatch of the European purse seine tuna fishery in the Atlantic Ocean for the 2003-2007 period. Aquat Living Resour 23:353–362.  https://doi.org/10.1051/alr/2011003 CrossRefGoogle Scholar
  2. Amandè MJ, Chassot E, Chavance P, Murua H, de Molina AD, Bez N (2012) Precision in bycatch estimates: the case of tuna purse-seine fisheries in the Indian Ocean. ICES J Mar Sci 69:1501–1510.  https://doi.org/10.1093/icesjms/fss106 CrossRefGoogle Scholar
  3. Anderson MJ, Willis TJ (2003) Canonical analysis of principal coordinates: a useful method of constrained ordination for ecology. Ecology 84:511–525.  https://doi.org/10.1890/0012-9658(2003)084%5b0511:CAOPCA%5d2.0.CO;2 CrossRefGoogle Scholar
  4. Ariz J, Delgado A, Fonteneau A, Gonzales Costas F, Pallares P (1999) Logs and tunas in the Eastern Tropical Atlantic. A review of present knowledge and uncertainties. In: Proceedings of the international workshop on fishing for tunas associated with floating objects. IATTC Spec Rep 11:21–65Google Scholar
  5. Bez N, Walker E, Gaertner D, Rivoirard J, Gaspar P (2011) Fishing activity of tuna purse seiners estimated from vessel monitoring system (VMS) data. Can J Fish Aquat Sci 68:1998–2010.  https://doi.org/10.1139/f2011-114 CrossRefGoogle Scholar
  6. Bonfil R (2008) The Biology and Ecology of the Silky Shark, Carcharhinus falciformis. In: Camhi MD, Pikitch EK, Babcock EA (eds) Sharks of the open ocean: biology, fisheries and conservation. Blackwell, Oxford, pp 114–127CrossRefGoogle Scholar
  7. Bourjea J, Clermont S, Delgado A, Murua H, Ruiz J, Ciccione S, Chavance P (2014) Marine turtle interaction with purse-seine fishery in the Atlantic and Indian oceans: lessons for management. Biol Conserv 178:74–87.  https://doi.org/10.1016/j.biocon.2014.06.020 CrossRefGoogle Scholar
  8. Capietto A, Escalle L, Chavance P, Dubroca L, Delgado de Molina A, Murua H, Floch L, Damiano A, Rowat D, Merigot B (2014) Mortality of marine megafauna induced by fisheries: insights from the whale shark, the world’s largest fish. Biol Conserv 174:147–151.  https://doi.org/10.1016/j.biocon.2014.03.024 CrossRefGoogle Scholar
  9. Cayré P (1984) Procédure suivie pour la révision de la composition spécifique des statistiques thonières FISM (France, Côte d’Ivoire, Sénégal et Maroc). Collect Vol Sci Pap ICCAT 21:102–107Google Scholar
  10. CDB (1992) Convention on biological diversity. www.cbd.int
  11. Chao A (1987) Estimating the population size for capture-recapture data with unequal catchability. Biometrics 43:783–791CrossRefGoogle Scholar
  12. Chassot E, Assan E, Soto M, Damiano A, Delgado De Molina A, Joachim LD, Cauquil P, Lesperance F, Curpen M, Lucas J, Floch L (2015a) Statistics of the European Union and associated flags purse seine fishing fleet targeting tropical tunas in the Indian Ocean 1981-2014. IOTC technical report. IOTC-2015-WPTT17-12Google Scholar
  13. Chassot E, Floch L, Dewals P, Irié D, Tamegnon A, Cauquil P, Amande MJ, Chavance P (2015b) Statistics of the French purse-seine fishing fleet targeting tropical tunas in the Atlantic Ocean (1991-2013). Collect Vol Sci Pap ICCAT 71:540–572Google Scholar
  14. Colman JG (1997) A review of the biology and ecology of the whale shark. J Fish Biol 51:1219–1234.  https://doi.org/10.1111/j.1095-8649.1997.tb01138.x CrossRefGoogle Scholar
  15. Dagorn L, Holland KN, Restrepo V, Moreno G (2013) Is it good or bad to fish with FADs? What are the real impacts of the use of drifting FADs on pelagic marine ecosystems? Fish Fish 14:391–415.  https://doi.org/10.1111/j.1467-2979.2012.00478.x CrossRefGoogle Scholar
  16. De Molina AD, Rojo V, Santana JC, Ariz J (2015) Estadísticas Españolas de la pesquería atunera tropical, en el océano Atlántico, hasta 2013. Collect Vol Sci Pap ICCAT 71:239–263Google Scholar
  17. Escalle L, Capietto A, Chavance P, Dubroca L, Delgado De Molina A, Murua H, Gaertner D, Romanov E, Spitz J, Kiszka JJ, Floch L, Damiano A, Merigot B (2015) Cetaceans and tuna purse seine fisheries in the Atlantic and Indian Oceans: interactions but few mortalities. Mar Ecol Prog Ser 522:255–268.  https://doi.org/10.3354/meps11149 CrossRefGoogle Scholar
  18. Escalle L, Pennino MG, Gaertner D, Chavance P, Delgado de Molina A, Demarcq H, Romanov E, Merigot B (2016) Environmental factors and megafauna spatio-temporal co-occurrence with purse-seine fisheries. Fish Oceanogr 25:433–447.  https://doi.org/10.1111/fog.12163 CrossRefGoogle Scholar
  19. Etienne RS, Olff H (2005) Confronting different models of community structure to species-abundance data: a Bayesian model comparison. Ecol Lett 8:493–504.  https://doi.org/10.1111/j.1461-0248.2005.00745.x CrossRefGoogle Scholar
  20. FAO (2003) Fisheries management. The ecosystem approach to fisheries. FAO technical guidelines for responsible fisheries, vol 4. FAO, Rome, pp 1–112Google Scholar
  21. Filmalter J, Capello M, Deneubourg JL, Cowley PD, Dagorn L (2013) Looking behind the curtain: quantifying massive shark mortality in fish aggregating devices. Front Ecol Environ 11:291–296.  https://doi.org/10.1890/130045 CrossRefGoogle Scholar
  22. Gaertner D, Menard F, Develter C, Ariz J (2002) Bycatch of billfishes by the European tuna purse-seine fishery in the Atlantic Ocean. Fish Bull 100:683–689Google Scholar
  23. Girard C, Benhamou S, Dagorn L (2004) FAD: fish aggregating device or fish attracting device? A new analysis of yellowfin tuna movements around floating objects. Anim Behav 67:319–326.  https://doi.org/10.1016/j.anbehav.2003.07.007 CrossRefGoogle Scholar
  24. Gleiss AC, Norman B, Wilson RP (2011) Moved by that sinking feeling: variable diving geometry underlies movement strategies in whale sharks. Funct Ecol 25:595–607.  https://doi.org/10.1111/j.1365-2435.2010.01801.x CrossRefGoogle Scholar
  25. Goldbogen JA, Calambokidis J, Shadwick RE, Oleson EM, McDonald MA, Hildebrand JA (2006) Kinematics of foraging dives and lunge-feeding in fin whales. J Exp Biol 209:1231–1244.  https://doi.org/10.1242/jeb.02135 CrossRefGoogle Scholar
  26. Goldbogen JA, Calambokidis J, Croll DA, Harvey JT, Newton KM, Oleson EM, Schorr G, Shadwick RE (2008) Foraging behavior of humpback whales: kinematic and respiratory patterns suggest a high cost for a lunge. J Exp Biol 211:3712–3719.  https://doi.org/10.1242/jeb.023366 CrossRefGoogle Scholar
  27. Gotelli NJ, Colwell RK (2001) Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness. Ecol Lett 4:379–391.  https://doi.org/10.1046/j.1461-0248.2001.00230.x CrossRefGoogle Scholar
  28. Hallier JP, Parajua JI (1999) Review of tuna fisheries on floating objects in the Indian Ocean. In: Proceedings of the international workshop on fishing for tunas associated with floating objects. IATTC spectrum report, vol 11, pp 195–221Google Scholar
  29. Hampton J, Bailey K (1999) Fishing for tunas associated with floating objects: review of the western Pacific fishery. In: Proceedings of the international workshop on fishing for tunas associated with floating objects. IATTC spectrum report, vol 11, pp 222–284Google Scholar
  30. Hurlbert SH (1971) The nonconcept of species diversity: a critique and alternative parameters. Ecology 52:577–586.  https://doi.org/10.2307/1934145 CrossRefGoogle Scholar
  31. Kelleher K (2005) Discards in the world’s marine fisheries: an update. FAO fisheries technical paper, vol 470. Food and Agriculture Organization of the United Nations, RomeGoogle Scholar
  32. Lezama-Ochoa N, Murua H, Chust G, Ruiz J, Chavance P, de Molina AD, Caballero A, Sancristobal I (2015) Biodiversity in the by-catch communities of the pelagic ecosystem in the western Indian Ocean. Biodivers Conserv 24:2647–2671.  https://doi.org/10.1007/s10531-015-0951-3 CrossRefGoogle Scholar
  33. Marsac F, Fonteneau A, Menard F (2000) Drifting FADs used in tuna fisheries: an ecological trap? In: Le Gall JY, Cayré P, Taquet M (eds) Pêche thonière et dispositifs de concentration de poissons. Actes de colloques, vol 28. IFREMER, Issy-les-Moulineaux, pp 15–35Google Scholar
  34. Matsumoto T, Satoh K, Toyonaga M (2014) Behavior of skipjack tuna (Katsuwonus pelamis) associated with a drifting FAD monitored with ultrasonic transmitters in the equatorial central Pacific Ocean. Fish Res 157:78–85.  https://doi.org/10.1016/j.fishres.2014.03.023 CrossRefGoogle Scholar
  35. Meekan M, Fuiman L, Davis R, Berger Y, Thums M (2015) Swimming strategy and body plan of the world’s largest fish: implications for foraging efficiency and thermoregulation. Mar Megafauna.  https://doi.org/10.3389/fmars.2015.00064 Google Scholar
  36. Pallarés P, Hallier JP (1997) Analyse du schéma d’échantillonnage multispécifique des thonidés tropicaux. Rapport scientifique. Program 95/37. IEO/ORSTOMGoogle Scholar
  37. Pallarés P, Petit C (1998) Tropical tunas: new sampling and data processing strategy for estimating the composition of catches by species and sizes. Collect Vol Sci Pap ICCAT 48:230–246Google Scholar
  38. Pianet R (1999) Evolution du système de collecte et de traitement des données de la pêche thonière des senneurs européens et assimilés de 1981 à 1998. IOTC Proc. 1:74–96Google Scholar
  39. Pikitch EK, Santora C, Babcock EA, Bakun A, Bonfil R, Conover DO, Dayton P, Doukakis P, Fluharty D, Heneman B, Houde ED, Link J, Livingston PA, Mangel M, McAllister MK, Pope J, Sainsbury KJ (2004) Ecosystem-based fishery management. Science 80(305):346–347.  https://doi.org/10.1126/science.1098222 CrossRefGoogle Scholar
  40. R Development Core Team (2017) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. Version 3.4.0Google Scholar
  41. Romanov EV (2002) Bycatch in the tuna purse-seine fisheries of the western Indian Ocean. Fish Bull 100:90–105Google Scholar
  42. Rowat D, Brooks KS (2012) A review of the biology, fisheries and conservation of the whale shark Rhincodon typus. J Fish Biol 80:1019–1056.  https://doi.org/10.1111/j.1095-8649.2012.03252.x CrossRefGoogle Scholar
  43. Siegel S, Castellan NJ (1988) Nonparametric statistics for the behavioral sciences, 2nd edn. McGraw-Hill, New York, p 399Google Scholar
  44. Simpson EH (1949) Measurement of diversity. Nature 163:688.  https://doi.org/10.1038/163688a0 CrossRefGoogle Scholar
  45. Smith B, Wilson JB (1996) A consumer’s guide to evenness indices. Oikos 76:70–82.  https://doi.org/10.2307/3545749 CrossRefGoogle Scholar
  46. Torres-Irineo E, Amandè MJ, Gaertner D, de Molina AD, Murua H, Chavance P, Ariz J, Ruiz J, Lezama-Ochoa N (2014a) Bycatch species composition over time by tuna purse-seine fishery in the eastern tropical Atlantic Ocean. Biodivers Conserv 23:1157–1173.  https://doi.org/10.1007/s10531-014-0655-0 CrossRefGoogle Scholar
  47. Torres-Irineo E, Gaertner D, Chassot E, Dreyfus-León M (2014b) Changes in fishing power and fishing strategies driven by new technologies: the case of tropical tuna purse seiners in the eastern Atlantic Ocean. Fish Res 155:10–19.  https://doi.org/10.1016/J.FISHRES.2014.02.017 CrossRefGoogle Scholar
  48. Tyminski JP, de la Parra-Venegas R, Cano JG, Hueter RE (2015) Vertical movements and patterns in diving behavior of whale sharks as revealed by pop-up satellite tags in the Eastern Gulf of Mexico. PLoS ONE 10:e0142156.  https://doi.org/10.1371/journal.pone.0142156 CrossRefGoogle Scholar
  49. Walters V, Fierstine HL (1964) Measurements of swimming speeds of yellowfin tuna and wahoo. Nature 202:208–209.  https://doi.org/10.1038/202208b0 CrossRefGoogle Scholar
  50. Ward T, Tarte D, Hegerl E, Short K (2002) Ecosystem-based management of marine capture fisheries. World Wide Fund for Nature Australia, UltimoGoogle Scholar
  51. Whittaker RH (1960) Vegetation of the Siskiyou mountains, Oregon and California. Ecol Monogr 30:279–338CrossRefGoogle Scholar
  52. Whittaker RH (1965) Dominance and diversity in land plant communities. Science 80(147):250–260.  https://doi.org/10.1126/science.147.3655.250 CrossRefGoogle Scholar
  53. Wilson JB (1991) Methods for fitting dominance/diversity curves. J Veg Sci 2:35–46.  https://doi.org/10.2307/3235896 CrossRefGoogle Scholar
  54. Yuen HSH (1966) Swimming speeds of yellowfin and skipjack tuna. Trans Am Fish Soc 95:203–209.  https://doi.org/10.1577/1548-8659(1966)95%5b203:SSOYAS%5d2.0.CO;2 CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  • Lauriane Escalle
    • 1
    • 5
    Email author
  • Daniel Gaertner
    • 1
  • Pierre Chavance
    • 1
  • Hilario Murua
    • 2
  • Monique Simier
    • 1
  • Pedro Jose Pascual-Alayón
    • 3
  • Frédéric Ménard
    • 4
  • Jon Ruiz
    • 6
  • Francisco Abascal
    • 3
  • Bastien Mérigot
    • 1
  1. 1.MARBEC, Univ Montpellier, CNRS, Ifremer, IRDSèteFrance
  2. 2.AZTI TecnaliaPasaiaSpain
  3. 3.Instituto Español de OceanografíaSanta Cruz de TenerifeSpain
  4. 4.Aix Marseille Université, Univ Toulon, CNRS, IRD, MIO, UM110MarseilleFrance
  5. 5.The Pacific Community (SPC)NoumeaNew Caledonia
  6. 6.AZTI TecnaliaSukarrietaSpain

Personalised recommendations