Advertisement

Biodiversity and Conservation

, Volume 28, Issue 3, pp 751–768 | Cite as

Secondary subtropical Atlantic forests shelter a surprising number of rare tree species: outcomes of an assessment using spatially unbiased data

  • Laio Zimermann OliveiraEmail author
  • André Luís de Gasper
  • Débora Vanessa Lingner
  • Lucia Sevegnani
  • Alexander Christian Vibrans
Original Paper
  • 100 Downloads

Abstract

There is an increasing interest in secondary forests due to their potential to shelter a substantial amount of tree species. Hence, this study sought to assess the rarity form of 646 arborescent species occurring in secondary stands of three forest types within the Brazilian subtropical Atlantic Forest biodiversity hotspot. The species were classified into one of seven rarity forms encompassing population size, habitat preference, and geographical distribution. Data gathered within 418 systematically distributed 0.4 ha sample plots were used. Among all recorded species (dbh ≥ 10 cm), 67% were classified into one of the seven rarity forms at least in one forest type. Approximately 50% of the species found in each forest type were rare. Myrtaceae was the family with the greatest number of rare species, followed by Fabaceae, Lauraceae, and Melastomataceae. Yet, rare species represented a diminished portion of the ~ 90,000 sampled individuals: less than 5% of the trees in each forest type. Rare species with scarce populations—i.e., forms 1, 3 and 7—represented more than 40% of the total species richness recorded in each forest type. The sample plots located in old-growth forests, ecotone areas, or areas with specific environmental conditions (e.g., hydromorphic soils), often showed larger proportions of rare species. Public protected areas appeared to be important for conservation as some species were observed exclusively in these areas and were singletons. Quadratic plateau regression models brought up evidence that the mean proportion of recorded rare species did not increase substantially in sample size classes greater than 70–80% of the reference samples.

Keywords

Threatened species Endemism Araucaria forest Rainforest 

Notes

Acknowledgements

The authors are grateful to M.E.G. Sobral and his colleagues for examining more than 100,000 collected specimens, and also to the 36 associated taxonomists for identifying the botanical material. The authors thank Fundação de Apoio à Pesquisa Científica e Tecnológica de Santa Catarina (FAPESC) and Serviço Florestal Brasileiro (SFB) for supporting the IFFSC, and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) for the research Grant (312075/2013-8) awarded to the last author. The authors are also grateful to T.M. Brun for the help with the English language. We dedicate this study to the memory of Lucia Sevegnani (1959–2015). She continually encouraged, with enthusiasm and dedication, young students and plant diversity researches in Santa Catarina, persistently struggling for biological conservation and ecological education.

Supplementary material

10531_2018_1690_MOESM1_ESM.pdf (1.7 mb)
Supplementary material 1 (PDF 1767 kb)

References

  1. Alarcon GG, Ayanu Y, Fantini AC et al (2015) Weakening the Brazilian legislation for forest conservation has severe impacts for ecosystem services in the Atlantic Southern Forest. Land Use Policy 47:1–11CrossRefGoogle Scholar
  2. Alvares CA, Stape JL, Sentelhas PC, Gonçalves JLM, Sparovek G (2013) Köppen’s climate classification map for Brazil. Meteor Z 22:711–728CrossRefGoogle Scholar
  3. APG IV (2016) An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV. Bot J Linn Soc 181:1–20CrossRefGoogle Scholar
  4. Caiafa AN, Martins FR (2007) Taxonomic identification, sampling methods, and minimum size of the tree sampled: implications and perspectives for studies in the Brazilian Atlantic Rainforest. Funct Ecosyst Commun 1:95–104Google Scholar
  5. Caiafa AN, Martins FR (2010) Forms of rarity of tree species in the Southern Brazilian Atlantic rainforest. Biodivers Conserv 19:2597–2618CrossRefGoogle Scholar
  6. Drever CR, Drever MC, Sleep DJH (2012) Understanding rarity: a review of recent conceptual advances and implications for conservation of rare species. Forest Chron 88:165–175CrossRefGoogle Scholar
  7. Eisenlohr PV, Alves LF, Bernacci LC, Padgurschi MCG, Torres RB et al (2013) Disturbances, elevation, topography and spatial proximity drive vegetation patterns along an altitudinal gradient of a top biodiversity hotspot. Biodivers Conserv 22:2767–2783CrossRefGoogle Scholar
  8. Ferreira TS, Higuchi P, Silva AC, Mantovani A, Marcon AK et al (2015a) Forms of rarity of trees in Araucaria forests in Southern of Brazil. Sci For 43:931–941Google Scholar
  9. Ferreira TS, Higuchi P, Silva AC, Mantovani A, Marcon AK et al (2015b) Distribuição e riqueza de espécies arbóreas raras em fragmentos de Floresta Ombrófila Mista ao longo de um gradiente altitudinal, em Santa Catarina. Revista Árvore 39:447–455CrossRefGoogle Scholar
  10. Flather CH, Sieg CH (2007) Species rarity: definition, causes, and classification. In: Raphael MG, Molina R (eds) Conservation of rare or little-known species: biological, social, and economic considerations. Island Press, Washington, pp 40–66Google Scholar
  11. Flora do Brasil 2020 (2017) Jardim Botânico do Rio de Janeiro. http://floradobrasil.jbrj.gov.br. Accessed 4 July 2017
  12. Fontana C, Gasper AL, Sevegnani L (2014) Espécies raras e comuns de Myrtaceae da Floresta Estacional Decidual de Santa Catarina, Brasil. Rodriguésia 65:767–776CrossRefGoogle Scholar
  13. Fontana C, Gasper AL, Sevegnani L (2016) A raridade das espécies arbóreas de Lauraceae no planalto do Estado de Santa Catarina, Brasil. Hoehnea 43:361–369CrossRefGoogle Scholar
  14. Freitas JV, Oliveira YM, Rosot MAD, Gomide GLA, Mattos PP (2010) National Forest Inventories: Brazil. In: Tomppo E, Gschwantner T, Lawrence M, McRoberts RE (eds) National forest inventories: pathways for common reporting. Springer, New York, pp 89–96Google Scholar
  15. Fundação SOS Mata Atlântica (2016) Atlas dos remanescentes florestais da Mata Atlântica: Período 2015-2016. Fundação SOS Mata Atlântica, São PauloGoogle Scholar
  16. Fundação SOS Mata Atlântica (2018) Atlas dos remanescentes florestais da Mata Atlântica: Período 2016–2017. Fundação SOS Mata Atlântica, São PauloGoogle Scholar
  17. Gardner T (2010) Monitoring forest biodiversity: improving conservation through ecologically responsible management. Earthscan, LondonCrossRefGoogle Scholar
  18. Gasper AL, Vibrans AC, Funez LA, Rigon Junior MJ, Bittencourt F et al (2014) Dr. Roberto Miguel Klein Herbarium (FURB), Blumenau, Southern Brazil. PhytoKeys 42:21–37CrossRefGoogle Scholar
  19. Gaston KJ (1994) Rarity. Chapman & Hall, LondonCrossRefGoogle Scholar
  20. Gerstner K, Moreno-Mateos D, Gurevitch J, Beckmann M, Kambach S et al (2017) Will your paper be used in a meta-analysis? Make the reach of your research broader and longer lasting. Methods Ecol Evol.  https://doi.org/10.1111/2041-210X.12758 Google Scholar
  21. Gregoire T (1998) Design-based and model-based inference in survey sampling: appreciating the difference. Can J For Res 28:1429–1447CrossRefGoogle Scholar
  22. Guedes-Bruni RR, Silva AG, Mantovani W (2009) Rare canopy species in communities within the Atlantic Coastal Forest in Rio de Janeiro State, Brazil. Biodivers Conserv 18:387–403CrossRefGoogle Scholar
  23. Henle K, Davies KF, Kleyer M, Margules C, Settele J (2004) Predictors of species sensitivity to fragmentation. Biodivers Conserv 13:207–251CrossRefGoogle Scholar
  24. Klein RM (1990) Espécies raras ou ameaçadas de Extinção do Estado de Santa Catarina. IBGE, Rio de JaneiroGoogle Scholar
  25. Klein RM (1996) Espécies raras ou ameaçadas de Extinção do Estado de Santa Catarina: vol 2. IBGE, Rio de JaneiroGoogle Scholar
  26. Kruckeberg AR, Rabinowitz DY (1985) Biological aspects of endemism in higher plants. Annu Rev Ecol Evol Syst 16:447–479CrossRefGoogle Scholar
  27. Lacerda AEB (2016) Conservation strategies for Araucaria Forests in Southern Brazil: assessing current and alternative approaches. Biotropica 48:537–544CrossRefGoogle Scholar
  28. Landrum LR (1981) A monograph of the genus Myrceugenia (Myrtaceae). Flora Neotrop 29:1–135Google Scholar
  29. Leite PF (2002) Contribuição ao conhecimento fitoecológico do sul do Brasil. Ciência & Ambiente 24:51–73Google Scholar
  30. Lima RAF, Mori DP, Pitta G, Melito MO, Bello C et al (2015) How much do we know about the endangered Atlantic Forest? Reviewing nearly 70 years of information on tree community surveys. Biodivers Conserv 24:2135–2148CrossRefGoogle Scholar
  31. Lucas EJ, Bünger M (2015) Myrtaceae in the Atlantic forest: their role as a ‘model’ group. Biodivers Conserv 24:2165–2180CrossRefGoogle Scholar
  32. Maçaneiro JP, Oliveira LZ, Eisenlohr PV, Schorn LA (2016a) Paradox between species diversity and conservation: a subtropical Atlantic Forest reserve in Brazil has similar tree species diversity to unprotected sites in the same region. Trop Conserv Sci.  https://doi.org/10.1177/1940082916668011 Google Scholar
  33. Maçaneiro JP, Oliveira LZ, Seubert RC, Eisenlohr PV, Schorn LA (2016b) More than environmental control at local scales: do spatial processes play an important role in floristic variation in subtropical forests? Acta Bot Bras 30:183–192CrossRefGoogle Scholar
  34. Magurran AE, Henderson PA (2003) Explaining the excess of rare species in natural species abundance distributions. Nature 422:714–716CrossRefGoogle Scholar
  35. Marques MCM, Joly CA (2000) Estrutura e dinâmica de uma população de Calophyllum brasiliense Camb. em floresta higrófila do Sudeste do Brasil. Rev Bras Bot 23:107–112CrossRefGoogle Scholar
  36. Marques MCM, Silva SM, Liebsch D (2015) Coastal plain forests in southern and southeastern Brazil: ecological drivers, floristic patterns and conservation status. Braz J Bot 38:1–18CrossRefGoogle Scholar
  37. Matthies D, Brauer I, Maibom W, Tscharntke T (2004) Population size and the risk of local extinction: empirical evidence from rare plants. Oikos 105:481–488CrossRefGoogle Scholar
  38. Meyer L, Vibrans AC, Gasper AL, Lingner DV, Sampaio DK (2012) Espécies exóticas encontradas nas florestas de Santa Catarina. In: Vibrans AC, Sevegnani L, Gasper AL, Lingner DV (eds) Inventário Florístico Florestal de Santa Catarina: Diversidade e conservação dos remanescentes florestais. Edifurb, Blumenau, pp 193–215Google Scholar
  39. Morueta-Holme N, Enquist BJ, McGill BJ, Boyle B, Jørgensen PM et al (2013) Habitat area and climate stability determine geographical variation in plant species range sizes. Ecol Lett 16:1446–1454CrossRefGoogle Scholar
  40. Murray-Smith C, Brummitt NA, Oliveira-Filho AT, Bachman S, Moat J et al (2009) Plant diversity hotspots in the Atlantic coastal forests of Brazil. Conserv Biol 23:151–163CrossRefGoogle Scholar
  41. Myers N, Mittermeier RA, Mittermeier CG, Fonseca GAB, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858CrossRefGoogle Scholar
  42. Nimer E (1990) Clima. In: IBGE—Fundação Instituto Brasileiro de Geografia e Estatística (ed) Geografia do Brasil: Região Sul. SERGRAF/IBGE, Rio de Janeiro, pp 151–187Google Scholar
  43. Oliveira MA, Santos AMM, Tabarelli M (2008) Profound impoverishment of the large-tree stand in a hyper-fragmented landscape of the Atlantic forest. For Ecol Manag 256:1910–1917CrossRefGoogle Scholar
  44. Oliveira LZ, Moser P, Vibrans AC, Piazza GA, Gasper AL, Oliveira-Filho AT (2016) Insights for selecting the most suitable nonparametric species richness estimators for subtropical Brazilian Atlantic Forests. Braz J Bot 39:593–603CrossRefGoogle Scholar
  45. Oliveira-Filho AT (2015) Um sistema de classificação fisionômico-ecológico da vegetação neotropical: segunda aproximação. Eisenlohr PV, Felfli JM, Melo MMRF, Andrade LA, Meira-Neto JAA (org) Fitossociologia no Brasil –, vol 2. Editora UFV, Viçosa, pp 452–474Google Scholar
  46. Oliveira-Filho AT, Fontes MAL (2000) Patterns of floristic differentiation among Atlantic forests in south-eastern Brazil, and the influence of climate. Biotropica 32:793–810CrossRefGoogle Scholar
  47. Oliveira-Filho AT, Budke JC, Jarenkow JA, Eisenlohr PV, Neves DRM (2015) Delving into the variations in tree species composition and richness across South American subtropical Atlantic and Pampean forests. J Plant Ecol 8:242–260CrossRefGoogle Scholar
  48. Padilha DL, Loregian AC, Budke JC (2015) Forest fragmentation does not matter to invasions by Hovenia dulcis. Biodivers Conserv 24:2293–2304CrossRefGoogle Scholar
  49. Pandolfo C, Braga HJ, Silva VP, Massignan AM, Pereira ES, Thomé VMR (2002) Atlas Climatológico do Estado de Santa Catarina. Epagri, FlorianópolisGoogle Scholar
  50. Pereira JAA, Oliveira-Filho AT, Eisenlohr PV, Miranda PLS, Lemos Filho JP (2015) Human impacts affect tree community features of 20 forest fragments of a vanishing neotropical hotspot. Environ Manage 55:296–307CrossRefGoogle Scholar
  51. Pitman NCA, Terborgh J, Silman MR, Nuñez VP (1999) Tree species distributions in an upper Amazonian forest. Ecology 80:2651–2661CrossRefGoogle Scholar
  52. Ponder WF, Carter GA, Flemons P, Chapman RR (2001) Evaluation of museum collection data for use in biodiversity assessment. Conserv Biol 15:648–657CrossRefGoogle Scholar
  53. PPG I (2016) A community-derived classification for extant lycophytes and ferns. J Syst Evol 54:563–603CrossRefGoogle Scholar
  54. Rabinowitz D (1981) Seven forms of rarity. In: Synge H (ed) The biological aspects of rare plant conservation. Riley, New York, pp 205–217Google Scholar
  55. ​Ribeiro MC, Metzger JP, Martensen AC, Ponzoni FJ, Hirota MM (2009) The Brazilian Atlantic Forest: How much is left, and how is the remaining forest distributed? Implications for conservation. Biol Conserv 142:1141–1153CrossRefGoogle Scholar
  56. Soares Filho B, Rajão R, Macedo M et al (2014) Cracking Brazil’s Forest Code. Science 344:363–364CrossRefGoogle Scholar
  57. Soboleski VF, Higuchi P, Silva AC, Silva MAF, Nunes AS et al (2017) Floristic-functional variation of tree component along an altitudinal gradient in araucaria forest areas, in Southern Brazil. An Acad Bras Cienc 89:2219–2228CrossRefGoogle Scholar
  58. Veloso HP, Klein RM (1961) As comunidades e associações vegetais da mata pluvial do Sul do Brasil III. As associações das planícies costeiras do quaternário, situadas entre o Rio Itapocu (Santa Catarina) e a Baía de Paranaguá (Estado do Paraná). Sellowia 13:205–260Google Scholar
  59. Vibrans AC, Sevegnani L, Uhlmann A, Schorn LA, Sobral MG et al (2011) Structure of mixed ombrophyllous forests with Araucaria angustifolia (Araucariaceae) under external stress in Southern Brazil. Rev Biol Trop 59:1371–1387Google Scholar
  60. Vibrans AC, McRoberts RE, Moser P, Nicoletti AL (2013) Using satellite image-based maps and ground inventory data to estimate the remaining Brazilian Atlantic forest in Santa Catarina. Remote Sens Environ 130:87–95CrossRefGoogle Scholar
  61. Vibrans AC, Gasper AL, Moser P, Oliveira LZ, Lingner DV, Sevegnani L (in press) Insights from a large-scale inventory in the Southern Brazilian Atlantic Forest. Scientia AgricolaGoogle Scholar
  62. Werneck MDS, Sobral MEG, Rocha CTV, Landau EC, Stehmann JR (2011) Distribution and endemism of angiosperms in the Atlantic Forest. Braz J Nat Conserv 9:188–193CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Laio Zimermann Oliveira
    • 1
    Email author
  • André Luís de Gasper
    • 2
    • 3
  • Débora Vanessa Lingner
    • 1
  • Lucia Sevegnani
    • 2
  • Alexander Christian Vibrans
    • 1
    • 3
  1. 1.Departamento de Engenharia FlorestalUniversidade Regional de BlumenauBlumenauBrazil
  2. 2.Departamento de Ciências NaturaisUniversidade Regional de BlumenauBlumenauBrazil
  3. 3.Programa de Pós-graduação em Engenharia FlorestalUniversidade Regional de BlumenauBlumenauBrazil

Personalised recommendations