The spread of the red-billed leiothrix (Leiothrix lutea) in Europe: The conquest by an overlooked invader?

  • Pedro Filipe PereiraEmail author
  • A. Márcia Barbosa
  • Carlos Godinho
  • Pedro A. Salgueiro
  • Rui R. Silva
  • Rui Lourenço
Original Paper


The red-billed leiothrix (Leiothrix lutea) is an Asian-native passerine which has been introduced across several regions of the world, including Europe. Although it is widely considered to be among the most harmful bird invaders, its occurrence in Europe is still understudied. Here, we aim to assess its distribution and population status in Europe. We obtained records for ten countries distributed throughout 37 spatially independent regions. The species is already established in France, Italy, Spain, and Portugal. The distribution range in Europe almost doubled between the periods of 2000–2008 and 2009–2017. A species distribution model showed that leiothrix presence probability increases with increasing combined values of human population density, spatial trend of occurrences, minimum temperature of the coldest month, precipitation of the driest quarter and precipitation seasonality. We identified two main introduction periods: late nineteenth and late twentieth centuries. In 1997, the species trade started to be regulated, resulting in a reduction of the imported numbers during the following years. Thus, the recent increase of the distribution range may be mostly related with self-dispersion. There has apparently been a great introduction rate near large urban areas which resulted in a broad spread into adjacent forests. The relationship between climatic traits and leiothrix presence may be due to its feeding ecology, as it often forages in wet soil and is limited by the availability of fruits and invertebrates. Future climate change scenarios can add further uncertainty to the invasion process by the leiothrix in Europe.


European scale Establishment Exotic bird Forests Urban areas Species distribution modelling 



We are grateful to the associate editor and reviewer which contributed with comments and suggestions which improved the first version of the manuscript. We thank Shirley van der Horst for the language and grammar review. We acknowledge the Laboratory of Ornithology, Évora University for logistics.

Supplementary material

10530_2019_2123_MOESM1_ESM.doc (741 kb)
Supplementary material 1 (DOC 741 kb)


  1. Akaike H (1973) Information theory and an extension of the maximum likelihood principle. In: Csaki ebBPaF (ed) 2nd international symposium on information theory. Akadémiai Kiadó, Budapest, Hungary, pp 267–281Google Scholar
  2. Amano HE, Eguchi K (2002a) Nest-site selection of the Red-billed Leiothrix and Japanese Bush Warbler in Japan. Ornithol Sci 1:101–110CrossRefGoogle Scholar
  3. Amano HE, Eguchi K (2002b) Foraging niches of introduced Red-billed Leiothrix and native species in Japan. Ornithol Sci 1:123–131CrossRefGoogle Scholar
  4. Anton M, Herrando S, Garcia D, Ferrer X, Cebrian R (2017) Atles des ocells nidificants de Barcelona. Ajuntament de Barcelona/ICO/UB/Zoo, BarcelonaGoogle Scholar
  5. Areias-Guerreiro J, Mira A, Barbosa AM (2016) How well can models predict changes in species distributions? A 13-year-old otter model revisited. Hystrix Italian J Mammal. CrossRefGoogle Scholar
  6. Barbosa AM (2015a) Fuzzysim: applying fuzzy logic to binary similarity indices in ecology. Methods Ecol Evol 6:853–858CrossRefGoogle Scholar
  7. Barbosa AM (2015b) Re-scaling of model evaluation measures to allow direct comparison of their values. J Brief Ideas 10:15. CrossRefGoogle Scholar
  8. Barbosa AM, Brown J, Jiménez-Valverde A, Real R (2016) modEvA: model evaluation and analysis. R package version 1.3.2Google Scholar
  9. Basly J (2007) Le Léiothrix jaune Leiothrix lutea en Béarn: répartition, effectifs et comportement. Ornithos 14:370–375Google Scholar
  10. Basnet K, Badola HK (2012) Birds of Fambonglho Wildlife Sanctuary, Sikkim, India: a baseline survey for conservation and area management. NeBioGoogle Scholar
  11. Blakston WA, Swaysland W, Wiener AF (1878) The illustrated book of canaries and cage-birds. Cassell, Petter, Galpin and Co., LondonGoogle Scholar
  12. Bossard M, Feranec J, Otahel J (2000) CORINE land cover technical guide: Addendum 2000. European Commission, BrusselsGoogle Scholar
  13. Brichetti P, Fracasso G (2010) Ornitologia Italiana, vol. 6 Sylviidae-Paradoxornithidae. Oasi Perdisa EditoreGoogle Scholar
  14. Calcagno V, de Mazancourt C (2010) Glmulti: an R Package for easy automated model selection with (generalized) linear models. J Stat Softw 34:12. CrossRefGoogle Scholar
  15. Carboneras C, Genovesi P, Vilà M, Blackburn TM, Carrete M, Clavero M, D’hondt B, Orueta JF, Gallardo B, Geraldes P, González-Moreno P (2018) A prioritised list of invasive alien species to assist the effective implementation of EU legislation. J Appl Ecol 55:539–547CrossRefGoogle Scholar
  16. Carrete M, Tella J (2008) Wild-bird trade and exotic invasions: a new link of conservation concern? Front Ecol Environ 6:207–211CrossRefGoogle Scholar
  17. Cerato E, Fracasso G (2014) Uccelli dei Colli Berici. Gruppo di studi naturalistici Nisoria, Provincia di VicenzaGoogle Scholar
  18. Chettri N, Sharma E, Deb D (2001) Bird community structure along a trekking corridor of Sikkim Himalaya: a conservation perspective. Biol Cons 102:1–16CrossRefGoogle Scholar
  19. Coles D (2011) First Breeding Records for Birds reared to Independence under Controlled Conditions in the United Kingdom. Avicultural Society, LondonGoogle Scholar
  20. Condé S, Richard D (2002) Europe’s biodiversity—biogeographical regions and seas. European Environment Agency, CopenhagenGoogle Scholar
  21. Cordier J (2002) Reproduction dans les Pyrénées-Atlantiques du Léiothrix Jaune Leiothrix lutea. Alauda 70:260–262Google Scholar
  22. Crooks JA (2005) Lag times and exotic species: the ecology and management of biological invasions in slow-motion. Ecoscience 12:316–329CrossRefGoogle Scholar
  23. Dejean T, Valentini A, Miquel C, Taberlet P, Bellemain E, Miaud C (2012) Improved detection of an alien invasive species through environmental DNA barcoding: the example of the American bullfrog Lithobates catesbeianus. J Appl Ecol 49:953–959CrossRefGoogle Scholar
  24. Demongin L (2016) Identification guide to birds in the hand. Cambridge University Press, CambridgeGoogle Scholar
  25. Diesselhorst G (1971) Sonnenvogel (Leiothrix lutea) brütete in Niedersachsen. Mißglückter Versuch einer Ansiedlung. Bonn Zool Bull 22:252–254Google Scholar
  26. Dubois PJ (2007) Les oiseaux allochtones en France: statut et interactions avec les espèces indigènes. Ornithos 14:329–364Google Scholar
  27. Dubois PJ, Maillard J-F, Cugnasse J-M (2016) Les populations d’oiseaux allochtones en France en 2015 (4 e enquête nationale). Ornithos 23:129–141Google Scholar
  28. Duncan RP, Blackburn TM, Sol D (2003) The ecology of bird introductions. Annu Rev Ecol Evol Syst 34:71–98CrossRefGoogle Scholar
  29. Etchécopar R (1955) L’acclimatation des oiseaux en France au cours des 100 dernières années. La Terre et La Vie 102:42–53Google Scholar
  30. Evans T, Kumschick S, Şekercioğlu ÇH, Blackburn TM (2018) Identifying the factors that determine the severity and type of alien bird impacts. Divers Distrib 24:800–810CrossRefGoogle Scholar
  31. Farina A, Pieretti N, Morganti N (2013) Acoustic patterns of an invasive species: the Red-billed Leiothrix (Leiothrix lutea Scopoli 1786) in a Mediterranean shrubland. Bioacoustics 22:175–194CrossRefGoogle Scholar
  32. Fick SE, Hijmans RJ (2017) WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int J Climatol 37:4302–4315CrossRefGoogle Scholar
  33. García LV (2003) Controlling the false discovery rate in ecological research. Trends Ecol Evol 18:553–554CrossRefGoogle Scholar
  34. Gengler J (1925) Verhandlungen der Ornithologischen Gesellschaft in Bayern. Dultz and Co., MϋnchenGoogle Scholar
  35. Goodwin D (1956) The problem of birds escaping from captivity. Brit Birds 49:339–349Google Scholar
  36. Hagemeijer WJ, Blair MJ (1997) The EBCC atlas of European breeding birds. Poyser, London, p 479Google Scholar
  37. Herrando S, Llimona F, Brotons L, Quesada J (2010) A new exotic bird in Europe: recent spread and potential range of Red-billed Leiothrix Leiothrix lutea in Catalonia (northeast Iberian Peninsula). Bird Study 57:226–235CrossRefGoogle Scholar
  38. Herrando S, Brotons L, Estrada J, Guallar S, Anton M (2011) Atles dels ocells de Catalunya a l’hivern 2006–2009: Catalan winter bird atlas 2006–2009. Institut Catalá d’Ornitologia y Lynx Edicions, BarcelonaGoogle Scholar
  39. Herrera CM (1982) Seasonal variation in the quality of fruits and diffuse coevolution between plants and avian dispersers. Ecology 63:773–785CrossRefGoogle Scholar
  40. Hijmans RJ, van Etten J (2017). Raster: geographic data analysis and modeling. R package version 2.6-7Google Scholar
  41. Hölzinger J (2014) Die “Frankfurter Ornithologische Gesellschaft e.V.” und ihre “Vogelschutz-Blätter”. Vogel undUmwelt 21:105–108Google Scholar
  42. ICO (2018) SIOC: servidor d’informació ornitològica de Catalunya. ICO, Barcelona. (
  43. Karsten P (2006) Pekin Robins and small softbills: management and breeding. Hancock House, SurreyGoogle Scholar
  44. Legendre P, Legendre L (2012) Numerical ecology. Elsevier, AmsterdamGoogle Scholar
  45. Lensink R, Ottens G, van der Have T (2013) Vreemde vogels in de Nederlandse vogelbevolking: een verhaal van vestiging en uitbreiding. Limosa 86:49–67Google Scholar
  46. Ludlow F, Kinnear NB (1937) The birds of Bhutan and adjacent territories of Sikkim and Tibet. IBIS 79:1–46CrossRefGoogle Scholar
  47. Ludvig E, Vanicsek L, Torok J, Csorgo T (1995) Seasonal variation of clutch size in the European blackbird Turdus merula: a new ultimate explanation. J Anim Ecol 64:85–94CrossRefGoogle Scholar
  48. Male TD, Fancy SG, Ralph CJ (1998) The red-billed leiothrix. In: Poole A, Gill F (eds) The birds of North America. Birds of North America, PhiladelphiaGoogle Scholar
  49. Martens J, Eck S (1995) Towards an ornithology of the Himalayas: systematics, ecology and vocalization of Nepal birds. Bonner Zool Monogr 38:311–312Google Scholar
  50. Martin-Albarracin VL, Amico GC, Simberloff D, Nuñez MA (2015) Impact of non-native birds on native ecosystems: a global analysis. PLoS ONE. CrossRefPubMedPubMedCentralGoogle Scholar
  51. Matias R (2002) Aves exóticas que nidificam em Portugal Continental. Instituto da Conservação da Natureza, Sociedade Portuguesa para o Estudo das AvesGoogle Scholar
  52. Melville DS (1982) A preliminary survey of the bird trade in Hong Kong. Hong Kong Bird Report 1980:55–102Google Scholar
  53. Moreau H (1892) L’Amateur d’Oiseaux de Volière. Librairie J.-B. Baillière et Fils, ParisGoogle Scholar
  54. Nardelli R, Andreotti A, Bianchi E, Brambilla M, Brecciaroli B, Celada C, Dupré E, Gustin M, Longoni V, Pirrello S (2015) Rapporto sull’applicazione della Direttiva 147/2009/CE in Italia: dimensione, distribuzione e trend delle popolazioni di uccelli (2008–2012), vol 219Google Scholar
  55. Nehring S, Rabitsch W, Kowarik I, Essl F (2015) Naturschutzfachliche Invasivitätsbewertungen für in Deutschland wild lebende gebietsfremde Wirbeltiere. Bundesamt für NaturschutzGoogle Scholar
  56. Pereira PF, Godinho C, Vila-Viçosa MJ, Mota PG, Lourenço R (2017) Competitive advantages of the red-billed leiothrix (Leiothrix lutea) invading a passerine community in Europe. Biol Invasions 19:1421–1430CrossRefGoogle Scholar
  57. Pereira PF, Lourenço R, Mota PG (2018) Behavioural dominance of the invasive red-billed leiothrix (Leiothrix lutea) over European native passerine-birds in a feeding context. Behaviour 155:55–67CrossRefGoogle Scholar
  58. Pimentel D, Zuniga R, Morrison D (2005) Update on the environmental and economic costs associated with alien-invasive species in the United States. Ecol Econ 52:273–288CrossRefGoogle Scholar
  59. Piria M, Copp GH, Dick JTA, Duplić A, Groom Q, Jelić D, Lucy FE, Roy HE, Sarat E, Simonovi P (2017) Tackling invasive alien species in Europe II: threats and opportunities until 2020. Manag Biol Invasions 8:273–286CrossRefGoogle Scholar
  60. Puglisi L, Bosi E, Corsi I, Del Sere M, Pezzo F, Sposimo P, Verducci D (2009) Usignolo del Giappone, bengalino & Co: alieni in Toscana. Alula 16:426–431Google Scholar
  61. Puglisi L, Corbi F, Sposimo P (2011) L’usignolo del Giappone Leiothrix lutea nel Lazio. Alula 18:77–84Google Scholar
  62. Ramellini S (2017) L’usignolo del Giappone Leiothrix lutea nel Lazio: aggiornamento della distribuzione ed annotazioni eco-etologiche. Alula 24:95–108Google Scholar
  63. R-Core-Team. 2018. R: A language and environment for statistical computingGoogle Scholar
  64. Reino L, Figueira R, Beja P, Araújo MB, Capinha C, Strubbe D (2017) Networks of global bird invasion altered by regional trade ban. Sci Adv 3:e1700783PubMedPubMedCentralCrossRefGoogle Scholar
  65. Rizzoli A, Bolzoni L, Chadwick EA, Capelli G, Montarsi F, Grisenti M, de la Puente JM, Muñoz J, Figuerola J, Soriguer R (2015) Understanding West Nile virus ecology in Europe: Culex pipiens host feeding preference in a hotspot of virus emergence. Parasites Vectors 8:213PubMedPubMedCentralCrossRefGoogle Scholar
  66. Roy HE, Rabitsch W, Scalera R, Stewart A, Gallardo B, Genovesi P, Essl F, Adriaens T, Bacher S, Booy O, Branquart E, Brunel S, Copp GH, Dean H, D’hondt B, Josefsson M, Kenis M, Kettunen M, Linnamagi M, Lucy F, Martinou A, Moore N, Nentwig W, Nieto A, Pergl J, Peyton J, Roques A, Schindler S, Schönrogge K, Solarz W, Stebbing PD, Trichkova T, Vanderhoeven S, van Valkenburg J, Zenetos A (2018) Developing a framework of minimum standards for the risk assessment of alien species. J Appl Ecol 55:526–538CrossRefGoogle Scholar
  67. Sakai AK, Allendorf FW, Holt JS, Lodge DM, Molofsky J, With KA, Baughman S, Cabin RJ, Cohen JE, Ellstrand NC (2001) The population biology of invasive species. Annu Rev Ecol Syst 32:305–332CrossRefGoogle Scholar
  68. Sastre P, Roca P, Lobo JM (2009) A Geoplatform for improving accessibility to environmental cartography. J Biogeogr 36:568CrossRefGoogle Scholar
  69. Self A (2014) The birds of London. AandC Black, LondonGoogle Scholar
  70. Singh A (2000) Birds of lower Garhwal Himalayas: Dehra Dun valley and neighbouring hills. Forktail 16:101–124Google Scholar
  71. Sol D, Maspons J, Vall-Llosera M, Bartomeus I, García-Peña GE, Piñol J, Freckleton RP (2012) Unraveling the life history of successful invaders. Science 337:580–583PubMedCrossRefGoogle Scholar
  72. Sol D, González-Lagos C, Lapiedra O, Díaz M (2017) Why are exotic birds so successful in urbanized environments? In: Ecology and conservation of birds in urban environments. Springer, pp 75–89Google Scholar
  73. Sorensen A (1981) Interactions between birds and fruit in a temperate woodland. Oecologia 50:242–249PubMedCrossRefGoogle Scholar
  74. Sovon Vogelonderzoek Nederland (2018) Vogelatlas van Nederland. Broedvogels, wintervogels, en 40 jaar verandering. Kosmos Uitgevers, Utrecht/AntwerpenGoogle Scholar
  75. Svensson L (2010) Collins bird guide. HarperCollins, New YorkGoogle Scholar
  76. Tassin J, Rivière J-N (2001) Le rôle potentiel du Leiothrix jaune Leiothrix lutea dans la germination de plantes envahissantes à la Réunion (Océan Indien). Alauda 69:34–41Google Scholar
  77. Tellería JL (2015) The decline of a peripheral population of the European robin Erithacus rubecula. J Avian Biol 46:159–166CrossRefGoogle Scholar
  78. Title PO, Bemmels JB (2018) ENVIREM: an expanded set of bioclimatic and topographic variables increases flexibility and improves performance of ecological niche modeling. Ecography 41:291–307CrossRefGoogle Scholar
  79. Tojo H, Nakamura S (2004) Breeding density of exotic Red-billed Leiothrix and native bird species on Mt. Tsukuba, central Japan. Ornithol Sci 3:23–32CrossRefGoogle Scholar
  80. Trollope J (1987) British Softbill imports: some observations. Part 2: thraupidae to Timallidae. Avicult Mag 93:167–170Google Scholar
  81. UN-General-Assembly (2015) Transforming our world: the 2030 Agenda for sustainable development, 21 October 2015, A/RES/70/1 Accessed 31 Jan 2019
  82. Václavík T, Meentemeyer RK (2009) Invasive species distribution modeling (iSDM): are absence data and dispersal constraints needed to predict actual distributions? Ecol Model 220:3248–3258CrossRefGoogle Scholar
  83. Vall-Llosera M, Sol D (2009) A global risk assessment for the success of bird introductions. J Appl Ecol 46:787–795CrossRefGoogle Scholar
  84. Vall-Llosera M, Llimona F, de Cáceres M, Sales S, Sol D (2016) Competition, niche opportunities and the successful invasion of natural habitats. Biol Invasions 18:3535–3546CrossRefGoogle Scholar
  85. Van Asperen BM (1996) Proposal for the Inclusion of the Red-billed Leiothrix (Leiothrix lutea) in Appendix II in accordance with Article II 2 (a) and Conference Resolution 9.24. Netherlands CITES ManagementGoogle Scholar
  86. Van Duivendijk N (2010) Advanced bird ID guide. Brit Birds 103:680–685Google Scholar
  87. Verducci D (2009) Analisi preliminare sulla presenza di una popolazione naturalizzata di usignolo del Giappone Leiothrix lutea (Scopoli, 1786) nella Toscana nord occidentale. UDI 34:95–97Google Scholar
  88. Vuilleumier F (1993) Notes on birds observed in beech (Fagus) forests in the Maoershan Natural Reserve, Guangxi Autonomous Region, China. Bull Brit Ornithol Club 113:152–166Google Scholar
  89. Zhang Q, Han R, Huang Z, Zou F (2013) Linking vegetation structure and bird organization: response of mixed-species bird flocks to forest succession in subtropical China. Biodivers Conserv 22:1965–1989CrossRefGoogle Scholar
  90. Zhang Z, Hou D, Xun Y, Zuo X, Yang D, Zhang Z (2016) Nest-site microhabitat association of red-billed leiothrix in subtropical fragmented forest in central China: evidence for a reverse edge effect on nest predation risk? J Nat Hist 50:1483–1501CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.ICAAM – Instituto de Ciências Agrárias e Ambientais Mediterrânicas, LabOr – Laboratório de OrnitologiaUniversidade de Évora, Núcleo da MitraÉvoraPortugal
  2. 2.Centro de Investigação em Ciências Geo-Espaciais (CICGE), Faculdade de CiênciasUniversidade do Porto, Observatório Astronómico Prof. Manuel de BarrosVila Nova de GaiaPortugal
  3. 3.UBC – Conservation Biology Lab, Department of BiologyUniversity of Évora, Pólo da MitraÉvoraPortugal

Personalised recommendations