Advertisement

Widespread hybridization among native and invasive species of Operophtera moths (Lepidoptera: Geometridae) in Europe and North America

  • Jeremy C. AndersenEmail author
  • Nathan P. Havill
  • Hannah J. Broadley
  • George H. Boettner
  • Adalgisa Caccone
  • Joseph S. Elkinton
Original Paper

Abstract

In North America the invasive winter moth (Operopthera brumata) has caused defoliation in forest and fruit crop systems in British Columbia, Nova Scotia, Oregon, and in the northeastern United States (the “Northeast”). In the Northeast, it was previously shown that hybridization is occurring with a native congener, Bruce spanworm (O. bruceata)—a species that has a broad distribution across much of North America. Whether hybridization among winter moth and Bruce spanworm populations has occurred in all of regions where winter moth established is unknown. One factor that might influence hybridization between these two species is the presence of reproductive manipulating endosymbionts, such a Wolbachia. To determine the geographic extent of hybridization among populations of these two species, we classified 1400 field-collected moths from Europe and North America as either being winter moth, Bruce spanworm, or hybrids using 10–12 polymorphic microsatellite loci. We then screened each individual for the presence of Wolbachia by PCR amplification of the wsp gene fragment. For all hybrids, we determined their maternal species-lineage by PCR amplification and sequencing of the mitochondrial locus cytochrome oxidase I. We find that winter moth x Bruce spanworm hybrid individuals appear to be present in all regions of North America that winter moth has invaded, and that hybrids are of both winter moth and Bruce spanworm maternal-origins. In addition, we find Wolbachia infected individuals from all species in North America, and that winter moth individuals in North America have a much lower infection rate (11.5%) than individuals in Europe (55.1%).

Keywords

Winter moth Bruce spanworm Forest pests Hybrid zone Gene flow Wolbachia 

Notes

Acknowledgements

This work would not have been possible without the collaboration of many individuals who collected samples in both Europe and North America. A complete list of all the collectors is provided in Table S1. We would also like to thank D. Newman for laboratory assistance, and R. Crandall, M. Davis, B. Griffin, R. Gwiazdowski, M. Labbé, J. Lombardo, N.J. Mills, T. Murphy, and G.K. Roderick for their creative comments and suggestions throughout this study. Funding for this project was provided by USDA-FS 13-CA-11420004-236 awarded to JSE, 12-USDA-FS JV-11242303-096 awarded to AC. The authors would also like to thank Dr. James Fordyce and two anonymous reviewers who provided edits and suggestions to an earlier version of the manuscript.

Author contributions

JSE directed the research. JSE and GHB coordinated the collection of samples. AC provided laboratory access and oversaw the molecular analyses. JCA, NPH, and HJB collected the molecular data. JCA analyzed the dataset and oversaw manuscript preparation. All authors contributed to the project design and in preparing the manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare no conflicts of interest.

Supplementary material

10530_2019_2054_MOESM1_ESM.docx (515 kb)
Supplementary material 1 (DOCX 514 kb)

References

  1. Ahmed MZ, Araujo-Jnr EV, Welch JJ, Kawahara AY (2015) Wolbachia in butterflies and moths: geographic structure in infection frequency. Front Zool 12:16.  https://doi.org/10.1186/s12983-015-0107-z CrossRefGoogle Scholar
  2. Allendorf FW, Leary RF, Spruell P et al (2001) The problems with hybrids: setting conservation guidelines. Trends Ecol Evol 16:613–622.  https://doi.org/10.1016/S0169-5347(01)02290-X CrossRefGoogle Scholar
  3. Andersen JC, Havill NP, Caccone A et al (2017) Postglacial recolonization shaped the genetic diversity of the winter moth (Operophtera brumata) in Europe. Ecol Evol 7:3312–3323.  https://doi.org/10.1002/ece3.2860/ CrossRefGoogle Scholar
  4. Anderson EC (2008) Bayesian inference of species hybrids using multilocus dominant genetic markers. Philos Trans R Soc B Biol Sci 363:2841–2850.  https://doi.org/10.1098/rstb.2008.0043 CrossRefGoogle Scholar
  5. Anderson EC, Thompson EA (2002) A model-based method for identifying species hybrids using multilocus genetic data. Genet 160:1217–1229Google Scholar
  6. Anderson CJ, Oakeshott JG, Wee Tek T et al (2018) Hybridization and gene flow in the mega-pest lineage of moth, Helicoverpa. Proc Nat Acad Sci USA 115:5034–5039.  https://doi.org/10.1073/pnas.1718831115 CrossRefGoogle Scholar
  7. Ayres DR, Zaremba K, Strong DR (2004) Extinction of a common native species by hybridization with an invasive congener. Weed Technol 18:1288–1291CrossRefGoogle Scholar
  8. Baldo L, Werren JH (2007) Revisiting Wolbachia supergroup typing based on wsp: spurious lineages and discordance with MLST. Curr Microbiol 55:81–87.  https://doi.org/10.1007/s00284-007-0055-8 CrossRefGoogle Scholar
  9. Bing XL, Xia WQ, Gui JD et al (2014) Diversity and evolution of the Wolbachia endosymbionts of Bemisia (Hemiptera: Aleyrodidae) whiteflies. Ecol Evol 4:2714–2737.  https://doi.org/10.1002/ece3.1126 CrossRefGoogle Scholar
  10. Bleidorn C, Gerth M (2017) A critical re-evaluation of multilocus sequence typing (MLST) efforts in Wolbachia. bioRxiv 133710;  https://doi.org/10.1101/133710
  11. Bordenstein SR, O’Hara FP, Werren JH (2001) Wolbachia-induced incompatibility precedes other hybrid incompatibilities in Nasonia. Nature 409:707–710.  https://doi.org/10.1038/35055543 CrossRefGoogle Scholar
  12. Broadley HJ, Kelley EA, Elkinton JS et al (2018) Identification and impact of hyperparasitoids and predators affecting Cyzenis albicans (Tachinidae), a recently introduced biological control agent of winter moth (Operophtera brumata L.) in the northeastern U.S.A. Biol Control 121:99–108.  https://doi.org/10.1016/j.biocontrol.2018.01.011 CrossRefGoogle Scholar
  13. Cattel J, Kaur R, Gibert P et al (2016) Wolbachia in European populations of the invasive pest Drosophila suzukii: regional variation in infection frequencies. PLoS ONE 11:e0147766.  https://doi.org/10.1371/journal.pone.0147766 CrossRefGoogle Scholar
  14. DeBach P, Rosen D (1991) Biological control by natural enemies. Cambridge University Press, CambridgeGoogle Scholar
  15. Derks MFL, Smit S, Salis L et al (2015) The genome of winter moth (Operophtera brumata) provides a genomic perspective on sexual dimorphism and phenology. Genome Biol Evol 7:2321–2332.  https://doi.org/10.1093/gbe/evv145 CrossRefGoogle Scholar
  16. Dobson SL, Bourtzis K, Braig HR et al (1999) Wolbachia infections are distributed throughout insect somatic and germ line tissues. Insect Biochem Mol Biol 29:153–160CrossRefGoogle Scholar
  17. Duplouy A, Hornett EA (2018) Uncovering the hidden players in Lepidoptera biology: the heritable microbial symbionts. PeerJ 6:e4629.  https://doi.org/10.7717/peerj.4629 CrossRefGoogle Scholar
  18. Elkinton JS, Boettner GH, Sremac M et al (2010) Survey for winter moth (Lepidoptera: Geometridae) in northeastern North America with pheromone-baited traps and hybridization with the native Bruce spanworm (Lepidoptera: Geometridae). Ann Entomol Soc Am 103:135–145.  https://doi.org/10.1603/AN09118 CrossRefGoogle Scholar
  19. Elkinton JS, Lance D, Boettner G et al (2011) Evaluation of pheromone-baited traps for winter moth and Bruce spanworm (Lepidoptera: Geometridae). J Econ Entomol 104:494–500CrossRefGoogle Scholar
  20. Elkinton JS, Liebhold A, Boettner GH et al (2014) Invasion spread of Operophtera brumata in northeastern United States and hybridization with O-bruceata. Biol Invasions 16:2263–2272.  https://doi.org/10.1007/s10530-014-0662-9 CrossRefGoogle Scholar
  21. Elkinton J, Boettener G, Liebhold A et al (2015) Biology, spread, and biological control of winter moth in the eastern United States. USDA Forest Service Publication, New York, p 22Google Scholar
  22. Ellison CK, Niehuis O, Gadau J (2008) Hybrid breakdown and mitochondrial dysfunction in hybrids of Nasonia parasitoid wasps. J Evol Biol 21:1844–1851.  https://doi.org/10.1111/j.1420-9101.2008.01608.x CrossRefGoogle Scholar
  23. Embree DG (1966) Role of introduced parasites in control of winter moth in Nova Scotia. Can Entomol 98:1159–1168CrossRefGoogle Scholar
  24. Embree DG (1967) Effects of winter moth on growth and mortality of red oak in Nova Scotia. For Sci 13:295–299Google Scholar
  25. Feder ME, Karr TL, Yang W et al (1999) Interaction of Drosophila and its endosymbiont Wolbachia: natural heat shock and the overcoming of sexual incompatibility. Am Zool 39:363–373.  https://doi.org/10.1093/icb/39.2.363 CrossRefGoogle Scholar
  26. Feder JL, Berlocher SH, Roethele JB et al (2003) Allopatric genetic origins for sympatric host-plant shifts and race formation in Rhagoletis. Proc Natl Acad Sci USA 100:10314–10319.  https://doi.org/10.1073/pnas.1730757100 CrossRefGoogle Scholar
  27. Fleury F, Vavre F, Ris N et al (2000) Physiological cost induced by the maternally-transmitted endosymbiont Wolbachia in the Drosophila parasitoid Leptopilina heterotoma. Parasitology 121:493–500CrossRefGoogle Scholar
  28. Floate KD, Kyei-Poku GK, Coghlin PC (2006) Overview and relevance of Wolbachia bacteria in biocontrol research. Biocontrol Sci Technol 16:767–788.  https://doi.org/10.1080/09583150600699606 CrossRefGoogle Scholar
  29. Garrick RC, Benavides E, Russello MA et al (2014) Lineage fusion in Galapagos giant tortoises. Mol Ecol 23:5276–5290.  https://doi.org/10.1111/mec.12919 CrossRefGoogle Scholar
  30. Gillespie DR, Finlayson T, Tonks NV et al (1978) Occurrence of winter moth, Operophtera-brumata (Lepidoptera, Geometridae), on southern Vancouver-Island, British-Columbia. Can Entomol 110:223–224CrossRefGoogle Scholar
  31. Guzman NV, Lanteri AA, Confalonieri VA (2012) Colonization ability of two invasive weevils with different reproductive modes. Evol Ecol 26:1371–1390.  https://doi.org/10.1007/s10682-012-9564-4 CrossRefGoogle Scholar
  32. Gwiazdowski RA, Elkinton JS, DeWaard JR, Sremac M (2013) Phylogeographic diversity of the winter moths Operophtera brumata and O. bruceata (Lepidoptera: Geometridae) in Europe and North America. Ann Entomol Soc Am 106:143–151.  https://doi.org/10.1603/AN12033 CrossRefGoogle Scholar
  33. Harrison RG, Larson EL (2014) Hybridization, introgression, and the nature of species boundaries. J Hered 105:795–809.  https://doi.org/10.1093/jhered/esu033 CrossRefGoogle Scholar
  34. Havill NP, Elkinton JS, Andersen JC et al (2017) Asymmetric hybridization between non-native winter moth, Operophtera brumata (Lepidoptera: Geometridae), and native Bruce spanworm, O. bruceata, in the northeastern United States, assessed with novel microsatellites and SNPs. Bull Entomol Res 107:241–250.  https://doi.org/10.1017/S0007485316000857 CrossRefGoogle Scholar
  35. Hebert PDN, Penton EH, Burns JM et al (2004) Ten species in one: DNA barcoding reveals cryptic species in the neotropical skipper butterfly Astraptes fulgerator. Proc Natl Acad Sci USA 101:14812–14817.  https://doi.org/10.1073/pnas.0406166101 CrossRefGoogle Scholar
  36. Hinton WF (1975) Natural hybridization and extinction of a population of Physalis-virginiana (Solanacea). Am J Bot 62:198–202CrossRefGoogle Scholar
  37. Hirsch H, Brunet J, Zalapa J et al (2017) Intra- and interspecific hybridization in invasive Siberian elm. Biol Invasions 19:1889–1904.  https://doi.org/10.1007/s10530-017-1404-6 CrossRefGoogle Scholar
  38. Hurst GD, Jiggins FM (2005) Problems with mitochondrial DNA as a marker in population, phylogeographic and phylogenetic studies: the effects of inherited symbionts. Proc R Soc B Biol Sci 272:1525–1534.  https://doi.org/10.1098/rspb.2005.3056 CrossRefGoogle Scholar
  39. Jaenike J, Dyer KA, Cornish C et al (2006) Asymmetrical reinforcement and Wolbachia infection in Drosophila. PLoS Biol 4:1852–1862.  https://doi.org/10.1371/journal.pbio.0040325 CrossRefGoogle Scholar
  40. Kimberling DN, Miller JC, Penrose RL (1986) Distribution and parasitism of winter moth, Operophtera-brumata (Lepidoptera, Geometridae), in western Oregon. Environ Entomol 15:1042–1046.  https://doi.org/10.1093/ee/15.5.1042 CrossRefGoogle Scholar
  41. Kriesner P, Conner WR, Weeks AR et al (2016) Persistence of a Wolbachia infection frequency cline in Drosophila melanogaster and the possible role of reproductive dormancy. Evolution 70:979–997.  https://doi.org/10.1111/evo.12923 CrossRefGoogle Scholar
  42. Krojerová-Prokešová J, Barančeková M, Kawata Y et al (2017) Genetic differentiation between introduced Central European sika and source populations in Japan: effects of isolation and demographic events. Biol Invasions 19:2125–2141.  https://doi.org/10.1007/s10530-017-1424-2 CrossRefGoogle Scholar
  43. Leite NA, Correa AS, Michel AP et al (2017) Pan-American similarities in genetic structures of Helicoverpa armigera and Helicoverpa zea (Lepidoptera: Noctuidae) with implications for hybridization. Environ Entomol 46:1024–1034.  https://doi.org/10.1093/ee/nvx088 CrossRefGoogle Scholar
  44. Li Y, Stift M, van Kleunen M (2018) Admixture increases performance of an invasive plant beyond first-generation heterosis. J Ecol 106:1595–1606CrossRefGoogle Scholar
  45. MacPhee AW (1967) Winter moth Operophtera brumata (Lepidoptera - Geometridae) a new pest attacking apple orchards in Nova Scotia and its coldhardiness. Can Entomol 99:829–834.  https://doi.org/10.4039/Ent99829-8 CrossRefGoogle Scholar
  46. Mannai Y, Ezzine O, Hausmann A et al (2017) Budburst phenology and host use by Operophtera brumata (Linnaeus, 1758) (Lepidoptera: Geometridae) in three Mediterranean oak species. Ann For Sci 74:3.  https://doi.org/10.1007/s13595-016-0600-3 CrossRefGoogle Scholar
  47. Mesgaran MB, Lewis MA, Ades PK et al (2016) Hybridization can facilitate species invasions, even without enhancing local adaptation. Proc Natl Acad Sci USA 113:10210–10214.  https://doi.org/10.1073/pnas.1605626113 CrossRefGoogle Scholar
  48. Michel-Salzat A, Cordaux R, Bouchon D (2001) Wolbachia diversity in the Porcellionides pruinosus complex of species (Crustacea: Oniscidea): evidence for host-dependent patterns of infection. Heredity 87:428–434CrossRefGoogle Scholar
  49. Mochiah MB, Ngi-Song AJ, Overholt WA et al (2002) Wolbachia infection in Cotesia sesamiae (Hymenoptera: Braconidae) causes cytoplasmic incompatibility: implications for biological control. Biol Control 25:74–80.  https://doi.org/10.1016/S1049-9644(02)00045-2 CrossRefGoogle Scholar
  50. Moran NA, McCutcheon JP, Nakabachi A (2008) Genomics and evolution of heritable bacterial symbionts. Annu Rev Genet 42:165–190.  https://doi.org/10.1146/annurev.genet.41.110306.130119 CrossRefGoogle Scholar
  51. Nguyen DT, Spooner-Hart RN, Riegler M (2016) Loss of Wolbachia but not Cardinium in the invasive range of the Australian thrips species, Pezothrips kellyanus. Biol Invasions 18:197–214.  https://doi.org/10.1007/s10530-015-1002-4 CrossRefGoogle Scholar
  52. Prentis PJ, Wilson JRU, Dormontt EE et al (2008) Adaptive evolution in invasive species. Trends Plant Sci 13:288–294.  https://doi.org/10.1016/j.tplants.2008.03.004 CrossRefGoogle Scholar
  53. R Core Team (2017) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.r-project.org/. Accessed 6 Mar 2017
  54. Raghavendra K, Barik TK, Reddy BPN et al (2011) Malaria vector control: from past to future. Parasitol Res 108:757–779.  https://doi.org/10.1007/s00436-010-2232-0 CrossRefGoogle Scholar
  55. Reuter M, Pedersen JS, Keller L (2005) Loss of Wolbachia infection during colonisation in the invasive Argentine ant Linepithema humile. Heredity 94:364–369.  https://doi.org/10.1038/sj.hdy.6800601 CrossRefGoogle Scholar
  56. Rhymer JM, Simberloff D (1996) Extinction by hybridization and introgression. Annu Rev Ecol Syst 27:83–109.  https://doi.org/10.1146/annurev.ecolsys.27.1.83 CrossRefGoogle Scholar
  57. Roland J, Embree DG (1995) Biological-control of the winter moth. Annu Rev Entomol 40:475–492.  https://doi.org/10.1146/annurev.en.40.010195.002355 CrossRefGoogle Scholar
  58. Ross PA, Endersby NM, Hoffman AA (2016) Costs of three Wolbachia infections on the survival of Aedes aegypti larvae under starvation conditions. PLoS Negl Trop Dis 10:e0004320.  https://doi.org/10.1371/journal.pntd.0004320 CrossRefGoogle Scholar
  59. Roy V, Girondot M, Harry M (2015) The distribution of Wolbachia in Cubitermes (Termitidae, Termitinae) castes and colonies: a modelling approach. PLoS ONE 10:e0116070.  https://doi.org/10.1371/journal.pone.0116070 CrossRefGoogle Scholar
  60. Roy D, Lucek K, Walter RP, Seehausen O (2016) Hybrid ‘superswarm’ leads to rapid divergence and establishment of populations during a biological invasion. Mol Ecol 24:5394–5411.  https://doi.org/10.1111/mec.13405 CrossRefGoogle Scholar
  61. Schuler H, Bertheau C, Egan SP et al (2013) Evidence for a recent horizontal transmission and spatial spread of Wolbachia from endemic Rhagoletis cerasi (Diptera: Tephritidae) to invasive Rhagoletis cingulata in Europe. Mol Ecol 22:4101–4111.  https://doi.org/10.1111/mec.12362/ CrossRefGoogle Scholar
  62. Schuler H, Koppler K, Daxbock-Horvath S et al (2016) The hitchhiker’s guide to Europe: the infection dynamics of an ongoing Wolbachia invasion and mitochondrial selective sweep in Rhagoletis cerasi. Mol Ecol 25:1595–1609.  https://doi.org/10.1111/mec.13571 CrossRefGoogle Scholar
  63. Schwarz D, Shoemaker KD, Botteri NL, McPheron BA (2007) A novel preference for an invasive plant as a mechanism for animal hybrid speciation. Evolution 61:245–256.  https://doi.org/10.1111/j.1558-5646.2007.00027.x CrossRefGoogle Scholar
  64. Schwenk K, Brede N, Streit B (2008) Introduction. Extent, processes and evolutionary impact of interspecific hybridization in animals. Philos Trans R Soc Lond B Biol Sci 363:2805–2811.  https://doi.org/10.1098/rstb.2008.0055 CrossRefGoogle Scholar
  65. Seehausen O, Takimoto G, Roy D et al (2008) Speciation reversal and biodiversity dynamics with hybridization in changing environments. Mol Ecol 17:30–44.  https://doi.org/10.1111/j.1365-294X.2007.03529.x CrossRefGoogle Scholar
  66. Shoemaker DD, Katju V, Jaenike J (1999) Wolbachia and the evolution of reproductive isolation between Drosophila recens and Drosophila subquinaria. Evolution 53:1157–1164.  https://doi.org/10.1111/j.1558-5646.1999.tb04529.x CrossRefGoogle Scholar
  67. Silva I, Van Meer MMM, Roskam MM et al (2000) Biological control potential of Wolbachia-infected versus uninfected wasps: laboratory and greenhouse evaluation of Trichogramma cordubensis and T. deion strains. Biocontrol Sci Technol 10:223–238.  https://doi.org/10.1080/09583150050044501 CrossRefGoogle Scholar
  68. Simmons MJ, Lee TD, Ducey MJ et al (2014) Effects of invasive winter moth defoliation on tree radial growth in eastern Massachusetts, USA. Insects 5:301–318.  https://doi.org/10.3390/insects5020301 CrossRefGoogle Scholar
  69. Szücs M, Eigenbrode SD, Schwarzlaender M et al (2012) Hybrid vigor in the biological control agent, Longitarsus jacobaeae. Evol Appl 5:489–497.  https://doi.org/10.1111/j.1752-4571.2012.00268.x CrossRefGoogle Scholar
  70. Todesco M, Pascual MA, Owens GL et al (2016) Hybridization and extinction. Evol Appl 9:892–908.  https://doi.org/10.1111/eva.12367 CrossRefGoogle Scholar
  71. Turelli M, Cooper BS, Richardson KM et al (2018) Rapid-global spread of wRI-like Wolbachia across multiple Drosophila. Curr Biol 28:963–971.  https://doi.org/10.1016/j.cub.2018.02.015 CrossRefGoogle Scholar
  72. Turley AP, Moreira LA, O’Neill SL et al (2009) Wolbachia infection reduces blood-feeding success in the dengue fever mosquito, Aedes aegypti. PLoS Negl Trop Dis 3:e516.  https://doi.org/10.1371/journal.pntd.0000516 CrossRefGoogle Scholar
  73. van den Hurk AF, Hall-Mendelin S, Pyke AT et al (2012) Impact of Wolbachia on infection with chikungunya and yellow fever viruses in the mosquito vector Aedes aegypti. PLoS Negl Trop Dis 6:e1892.  https://doi.org/10.1371/journal.pntd.0001892 CrossRefGoogle Scholar
  74. Verhoeven KJF, Macel M, Wolfe LM et al (2011) Population admixture, biological invasions and the balance between local adaptation and inbreeding depression. Proc R Soc B Biol Sci 278:2–8.  https://doi.org/10.1098/rspb.2010.1272 CrossRefGoogle Scholar
  75. Vilatersana R, Sanz M, Galian A, Castells E (2016) The invasion of Senecio pterophorus across continents: multiple, independent introductions, admixture and hybridization. Biol Invasions 18:2045–2065.  https://doi.org/10.1007/s10530-016-1150-1 CrossRefGoogle Scholar
  76. Weeks AR, Reynolds KT, Hoffmann AA et al (2002) Wolbachia dynamics and host effects: what has (and has not) been demonstrated? Trends Ecol Evol 17:257–262.  https://doi.org/10.1016/S0169-5347(02)02480-1 CrossRefGoogle Scholar
  77. Weinert LA, Araujo-Jnr EV, Ahmed MZ, Welch JJ (2015) The incidence of bacterial endosymbionts in terrestrial arthropods. Proc R Soc B Biol Sci 282:20150249.  https://doi.org/10.1098/rspb.2015.0249 CrossRefGoogle Scholar
  78. Werren JH (1997) Biology of Wolbachia. Annu Rev Entomol 42:587–609.  https://doi.org/10.1146/annurev.ento.42.1.587 CrossRefGoogle Scholar
  79. Werren JH, Baldo L, Clark ME (2008) Wolbachia: master manipulators of invertebrate biology. Nat Rev Microbiol 6:741–751.  https://doi.org/10.1038/nrmicro1969 CrossRefGoogle Scholar
  80. White JA, Richards NK, Laugraud A et al (2015) Endosymbiotic candidates for parasitoid defense in exotic and native New Zealand weevils. Microb Ecol 70:274–286.  https://doi.org/10.1007/s00248-014-0561-8 CrossRefGoogle Scholar
  81. Wolf DE, Takebayashi N, Rieseberg LH (2001) Predicting the risk of extinction through hybridization. Conserv Biol 15:1039–1053.  https://doi.org/10.1046/j.1523-1739.2001.0150041039.x CrossRefGoogle Scholar
  82. Yang CC, Yu YC, Valles SM et al (2010) Loss of microbial (pathogen) infections associated with recent invasions of the red imported fire ant Solenopsis invicta. Biol Invasions 12:3307–3318.  https://doi.org/10.1007/s10530-010-9724-9 CrossRefGoogle Scholar
  83. Zabal-Aguirre M, Arroyo F, Bella JL (2010) Distribution of Wolbachia infection in Chorthippus parallelus populations within and beyond a Pyrenean hybrid zone. Heredity 104:174–184.  https://doi.org/10.1038/hdy.2009.106 CrossRefGoogle Scholar
  84. Zabalou S, Riegler M, Theodorakopoulou M et al (2004) Wolbachia-induced cytoplasmic incompatibility as a means for insect pest population control. Proc Natl Acad Sci USA 101:15042–15045.  https://doi.org/10.1073/pnas.0403853101 CrossRefGoogle Scholar
  85. Zhang Z, Schwartz S, Wagner L et al (2000) A greedy algorithm for aligning DNA sequences. J Comput Biol 7:203–214.  https://doi.org/10.1089/10665270050081478 CrossRefGoogle Scholar
  86. Zhou WG, Rousset F, O’Neill S (1998) Phylogeny and PCR-based classification of Wolbachia strains using wsp gene sequences. Proc R Soc B Biol Sci 265:509–515.  https://doi.org/10.1098/rspb.1998.0324 CrossRefGoogle Scholar
  87. Zindel R, Gottlieb Y, Aebi A (2011) Arthropod symbioses: a neglected parameter in pest- and disease-control programmes. J Appl Ecol 48:864–872.  https://doi.org/10.1111/j.1365-2664.2011.01984.x CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Environmental ConservationUniversity of Massachusetts AmherstAmherstUSA
  2. 2.USDA Forest Service, Northern Research StationHamdenUSA
  3. 3.Graduate Program in Organismic and Evolutionary BiologyUniversity of Massachusetts AmherstAmherstUSA
  4. 4.Department of Ecology and Evolutionary BiologyYale UniversityNew HavenUSA

Personalised recommendations