Advertisement

A new hybrid between two alien Helichrysum species (Compositae, Gnaphalieae) from NW Spain

  • Joan Prunera-Olivé
  • Mercè Galbany-Casals
  • Javier Cremades
  • Jaime FagúndezEmail author
Invasion Note
  • 23 Downloads

Abstract

Hybridisation events between Invasive Alien Species can contribute to the acquisition of novel traits or a higher fitness through gene exchange and, in consequence, facilitate the adaptation to new environments and the colonization of new territories. Using morphological data and DNA sequences, we have identified and described a new hybrid between Helichrysum petiolare and H. foetidum. Both species are original to South Africa, but have become invasive in the coast of Galicia, NW Spain. The hybrids were raised in the laboratory from achenes collected from H. petiolare in isolated populations far from the core invaded area, but have so far not been found in the wild. Up to now, there is no evidence that the hybrids are themselves fertile. We consider that the risk assessment for these invasive species must take into account the potential crosses in natural areas, a phenomenon with implications in the species capacity to affect the invaded habitats.

Keywords

Asteraceae Hybridisation Helichrysum Iberian Peninsula Invasive alien species ITS ndhF 

Notes

Acknowledgements

Authors thank Maria Luisa Gutiérrez and Fernando Castro for providing technical support during the laboratory process. Alejandro Gesto aided with the germination experiment. The Catalan government (‘Ajuts a grups consolidats’ 2014-SGR 514 and 2017-SGR1116) partly financed this work.

Supplementary material

10530_2019_1935_MOESM1_ESM.docx (14 kb)
Supplementary material 1 (DOCX 13 kb)

References

  1. Abbott RJ, James JK, Milne RI, Gillies AC (2003) Plant introductions, hybridization and gene flow. Philos Trans Ser B 358:1123–1132CrossRefGoogle Scholar
  2. Álvarez I, Wendel JF (2003) Ribosomal ITS sequences and plant phylogenetic inference. Mol Phylogenet Evol 29:417–434CrossRefGoogle Scholar
  3. Bailey JP (2001) Fallopia x conollyana the railway-yard knotweed. Watsonia 23:539–542Google Scholar
  4. Bailey J (2013) The Japanese knotweed invasion viewed as a vast unintentional hybridisation experiment. Heredity 110:105–110.  https://doi.org/10.1038/hdy.2012.98 CrossRefGoogle Scholar
  5. Barcelos L, Heiden G (2017) First record of Helichrysum foetidum (L.) Moench. (Asteraceae, Gnaphalieae) for South America. Check List 13:331–334CrossRefGoogle Scholar
  6. Barres L, Sanmartín I, Anderson CL, Susanna A, Buerki S, Galbany-Casals M, Vilatersana R (2013) Reconstructing the evolution and biogeographic history of tribe cardueae (compositae). Amer J Bot 100:867–882CrossRefGoogle Scholar
  7. Beentje H (2016) The Kew plant glossary: an illustrated dictionary of plant terms, 2nd edn. Royal Botanic Gardens, KewGoogle Scholar
  8. Cullings KW (1992) Design and testing of a plantspecific PCR primer for ecological and evolutionary studies. Molec Ecol 1:233–240CrossRefGoogle Scholar
  9. Davidson AM, Jennions M, Nicotra AB (2011) Do invasive species show higher phenotypic plasticity than native species and if so, is it adaptive? A meta-analysis. Ecol Lett 14:419–431CrossRefGoogle Scholar
  10. Domingues de Almeida J, Freitas H (2007) Exotic naturalized flora of continental Portugal—A reassessment. Bot Complut 31:113–125Google Scholar
  11. Doyle J, Dickson E (1987) Preservation of plant samples for DNA restriction endonuclease analysis. Taxon 36:715–722CrossRefGoogle Scholar
  12. Eldenäs P, Källersjö M, Anderberg AA (1999) Phylogenetic placement and circumscription of tribes Inuleae s.str. and Plucheeae (Asteraceae): evidence from sequences of chloroplast gene ndhF. Molec Phylogen Evol 13:50–58CrossRefGoogle Scholar
  13. Ellstrand NC, Schierenbeck KA (2000) Hybridization as a stimulus for the evolution of invasiveness in plants? Proc Natl Acad Sci USA 97:7043–7050CrossRefGoogle Scholar
  14. Fagúndez J, Barrada M (2007) Plantas invasoras de Galicia: Bioloxía, distribución e métodos de control. Xunta de Galicia, Santiago de CompostelaGoogle Scholar
  15. Galbany-Casals M, Romo A (2008) Polyploidy and new chromosome counts in Helichrysum Mill. (Asteraceae, Gnaphalieae). Bot J Linn Soc 158:511–521CrossRefGoogle Scholar
  16. Galbany-Casals M, Garcia-Jacas N, Susanna A, Sáez L, Benedí C (2004) Phylogenetic relationships in the mediterranean Helichrysum (Asteraceae, Gnaphalieae) based on nuclear rDNA ITS sequence data. Austral Syst Bot 17:241–253CrossRefGoogle Scholar
  17. Galbany-Casals M, Garcia-Jacas N, Sáez L, Benedí C, Susanna A (2009) Phylogeny, biogeography, and character evolution in Mediterranean, Asiatic and Macaronesian Helichrysum (Asteraceae, Gnaphalieae) inferred from nuclear phylogenetic analyses. Int J Plant Sci 170:365–380CrossRefGoogle Scholar
  18. Galbany-Casals M, Blanco-Moreno JM, Garcia-Jacas N, Breitwieser I, Smissen R (2011) Genetic and morphological variation in the Mediterranean Helichrysum italicum (Asteraceae; Gnaphalieae): do disjunct populations of subsp. microphyllum have a common origin? Plant Biol 13:678–687.  https://doi.org/10.1111/j.1438-8677.2010.00411.x CrossRefGoogle Scholar
  19. Galbany-Casals M, Carnicero-Campmany P, Blanco-Moreno JM, Smissen RD (2012) Morphological and genetic evidence of contemporary intersectional hybridisation in Mediterranean Helichrysum (Asteraceae, Gnaphalieae). Plant Biol 14:789–800CrossRefGoogle Scholar
  20. Galbany-Casals M, Unwin M, Garcia-Jacas N, Smissen RD, Susanna A, Bayer RJ (2014) Phylogenetic relationships in Helichrysum (Compositae: Gnaphalieae) and related genera: Incongruence between nuclear and plastid phylogenies, biogeographic and morphological patterns, and implications for generic delimitation. Taxon 63:608–624CrossRefGoogle Scholar
  21. Galbany-Casals M, Sáez L, Herrando-Moraira S (In press) Helichrysum Mill. In: Benedí C, Buira A, Rico E, Crespo MB, Quintanar A, Aedo C (eds) Flora iberica XVI(III). Real Jardín Botánico, CSIC, Madrid, pp 1607–1627Google Scholar
  22. Hammer Ø, Harper DAT, Ryan PD (2001) PAST: Paleontological Statistics software package for education and data analysis. Palaeontol Electron 4:1–9Google Scholar
  23. Herrando-Moraira S, Carnicero P, Blanco-Moreno JM, Sáez L, Véla E, Vilatersana R, Galbany-Casals M (2017) Systematics and phylogeography of the Mediterranean Helichrysum pendulum complex (Compositae) inferred from nuclear and chloroplast DNA and morphometric analyses. Taxon 66:909–933CrossRefGoogle Scholar
  24. Hilliard OM (1983) Asteraceae (Compositae). Part 7, Inuleae. Fascicle 2, Gnaphaliinae (first part) In: Leistner OA (ed) Flora of Southern Africa, vol 33. Botanical Research Institute, Pretoria, pp 1–325Google Scholar
  25. Huson DH, Bryant D (2006) Application of phylogenetic networks in evolutionary studies. Mol Biol Evol 23:254–267CrossRefGoogle Scholar
  26. Kim KJ, Jansen RK (1995) ndhF sequence evolution and the major clades in the sunflower family. Proc Natl Acad Sci USA 92:10379–10383CrossRefGoogle Scholar
  27. Kumar S, Stecher G, Tamura K (2015) MEGA7: molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Molec Biol Evol 33:1870–1874CrossRefGoogle Scholar
  28. Laínz M (1974) Aportaciones al conocimiento de la flora gallega VIII. Comun del Inst Nac de Invest Agrar Ser Recur Nat 2:1–26Google Scholar
  29. Marhold K, Lihova J, Perny M, Grupe R, Neuffer B (2002) Natural hybridization in Cardamine (Brassicaceae) in the Pyrenees: evidence from morphological and molecular data. Bot J Linn Soc 139:275–294CrossRefGoogle Scholar
  30. Mota L, Torices R, Loureiro J (2016) The evolution of haploid chromosome numbers in the sunflower family. Genome Biol Evol 8:3516–3528CrossRefGoogle Scholar
  31. Mouriño J, Fagúndez J, Bernárdez G (2012) Distribution and invasiveness of the alien plant Helichrysum petiolare Hilliard, BL Burtt (Asteraceae) in Northwest Iberian Peninsula. NEOBIOTA 7th European conference on biological invasions, Sept. 2012, Pontevedra, SpainGoogle Scholar
  32. Pinto da Silva AR (1956) Helichrysum petiolatum (L.) Plantas novas e novas áreas para a flora de Portugal. Agron lusit 18:11–49Google Scholar
  33. Poczai P, Hyvönen J (2009) Nuclear ribosomal spacer regions in plant phylogenetics: problems and prospects. Mol Biol Rep 37:1897–1912CrossRefGoogle Scholar
  34. Prentis PJ, Wilson JR, Dormontt EE, Richardson DM, Lowe AJ (2008) Adaptive evolution in invasive species. Trends Plant Sci 13:288–294CrossRefGoogle Scholar
  35. Ramsey J (2011) Polyploidy and ecological adaptation in wild yarrow. Proc Natl Acad Sci USA 108:7096–7101CrossRefGoogle Scholar
  36. Rieseberg LH (1997) Hybrid origin of plant species. Annual Rev Ecol Syst 28:359–389CrossRefGoogle Scholar
  37. Rieseberg LH, Archer MA, Wayne RK (1999) Transgressive segregation, adaptation and speciation. Heredity 83:363–372CrossRefGoogle Scholar
  38. Romero-Buján MI (2007) Flora exótica de Galicia (noroeste ibérico). Bot Complut 31:113–125Google Scholar
  39. Soltis PS, Soltis DE (2009) The role of hybridisation in plant speciation. Annual Rev Plant Biol 60:561–588CrossRefGoogle Scholar
  40. Sun Y, Skinner DZ, Liang GH, Hulbert SH (1994) Phylogenetic analysis of Sorghum and related taxa using internal transcribed spacers of nuclear ribosomal DNA. Theor Appl Genet 89:26–32CrossRefGoogle Scholar
  41. Tel-Zur N, Abbo S, Mysladbodski D, Mizrahi Y (1999) Modified CTAB procedure for DNA isolation from epiphytic cacti of genera Hylocereus and Selenicereus (Cactaceae). Plant Molec Biol Report 17:249–254CrossRefGoogle Scholar
  42. Vilà M, Weber E, Antonio CM (2000) Conservation implications of invasion by plant hybridization. Biol invas 2:207–217CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Systematics and Evolution of Vascular Plants (UAB)—Associated Unit to CSIC. Departament de Biologia Animal, Biologia Vegetal i Ecologia, Facultat de BiociènciesUniversitat Autònoma de BarcelonaBellaterraSpain
  2. 2.BioCost research group—Department of Biology, CICA & Facultade de CienciasUniversidade da CoruñaA CoruñaSpain

Personalised recommendations