Advertisement

Andropogon gayanus Kunth invasion in the Cerrado: from seed production to seedling establishment along roadsides

  • Carolina MussoEmail author
  • Mariana Aragão de Macedo
  • Niquele Nunes Almeida
  • Danillo de Melo Rodrigues
  • Maria Eduarda Moreira Salomon Camargo
  • Ana Clara Caixeta Queiroz Pôrto
  • Heloisa Sinatora Miranda
Original Paper
  • 26 Downloads

Abstract

Andropogon gayanus Kunth is a highly invasive grass, but the importance of the seed reproduction for its spread has not been evaluated in Cerrado. This study measured the seed reproduction of A. gayanus by assessing parameters from seed production to seed establishment. The study used replicates in three natural reserves located near Brasília. In each area, sites adjacent to roads were selected. For seed production, panicles were covered with a fine-mesh cloth to collect the seeds. Seeds were counted and analyzed for viability. After seed dispersal, seeds on the soil surface and 3-cm-deep soil samples were collected. Seeds were counted and germinated, and the soil samples were kept in a greenhouse, to estimate the density of the germinable soil seed bank. For emergence depth, seeds were sown at the surface, 1, 2 or 3 cm depth. For seed longevity, bags of seeds were buried in the field and analyzed for viability monthly. Each inflorescence produced an average of 604 seeds (22% viability). Surface seed density was highest at the road edge (> 5000 seeds/m2), with average germination of 29%. Mean soil seed bank reached 232 seedlings/m2 at the roadside. Seeds were able to emerge from all burying depths. The viability of buried seeds decreased to 2% after 1 year. Only seedlings by the border were able to establish. Data show a massive investment in seeds, with low recruitment. We recommend that A. gayanus be controlled by impairing its dispersal, to prevent the establishment of new seedlings.

Keywords

Invasive grass Seed viability Germination Recruitment Fertile seeds Border 

Notes

Acknowledgements

The authors are grateful for grants awarded under the project CAPES-PAJT 88887.093793/2015-00 to C. Musso, M. A. Macedo and D. M. Rodrigues. We also thank the staff of the Natural Reserves (Reserva Ecologica do IBGE, Jardim Botânico de Brasília and Parque Nacional de Brasília) and of the Department of Ecology of the University of Brasília for providing field and laboratory facilities.

Funding

This work was funded by a Coordenação de Aperfeiçoamento de Pessoal de Nível Superior CFS-PAJT 88887.093793/2015-00.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Adkins S, Bellair SS, Loch D (2002) Seed dormancy mechanisms in warm season grass species. Euphytica 126:13–20.  https://doi.org/10.1023/a:1019623706427 CrossRefGoogle Scholar
  2. Andrade LAZ, Miranda HS (2014) The dynamics of the soil seed bank after a fire event in a woody savanna in central Brazil. Plant Ecol 215:1199–1209.  https://doi.org/10.1007/s11258-014-0378-z CrossRefGoogle Scholar
  3. Andrade LAZ, Neto WN, Miranda HS (2002) Effects of fire on the soil seed bank in a cerrado sensu stricto in Central Brazil. In: Viegas DX (ed) Forest fire research & wildland fire safety—Luso, Portugal. MillPress, Rotterdam, p 217Google Scholar
  4. Barbosa NPU, Fernandes GW, Carneiro MAA, Júnior LAC (2010) Distribution of non-native invasive species and soil properties in proximity to paved roads and unpaved roads in a quartzitic mountainous grasslands of southeastern Brazil (rupestrian fields). Biol Invasions 12:3745–3755.  https://doi.org/10.1007/s10530-010-9767-y CrossRefGoogle Scholar
  5. Bond WJ, Honig M, Maze KE (1999) Seed size and seedling emergence: an allometric relationship and some ecological implications. Oecologia 120:132–136.  https://doi.org/10.1007/s004420050841 CrossRefGoogle Scholar
  6. BRASIL (2009) Regras para análise de sementes. Ministério da Agricultura, BrasíliaGoogle Scholar
  7. Brooks KJ (2011) Evaluating exotic grass invasion and its management in terms of savanna restoration which can be found. Ph.D. Thesis, Charles Darwin University, AustraliaGoogle Scholar
  8. Brooks KJ, Setterfield SA, Douglas MM (2010) Exotic grass invasions: applying a conceptual framework to the dynamics of degradation and restoration in Australia’s tropical savannas. Restor Ecol 18:188–197.  https://doi.org/10.1111/j.1526-100X.2008.00470x CrossRefGoogle Scholar
  9. Camargo NF, Cruz RMS, Ribeiro JF, Vieira EM (2011) Frugivoria e potencial de dispersão de sementes pelo marsupial Gracilinanus agilis (Didelphidae: Didelphimorphia) em áreas de Cerrado no Brasil central. Acta Botanica Brasilica 25:646–656.  https://doi.org/10.1590/S0102-33062011000300018 CrossRefGoogle Scholar
  10. Casper BB, Jackson RB (1997) Plant competition underground. Annu Rev Ecol Syst 28:545–570.  https://doi.org/10.1146/annurev.ecolsys.28.1.545 CrossRefGoogle Scholar
  11. Castro-Neves BM, Miranda HS (1996) Efeitos do fogo no regime térmico de um campo sujo de cerrado. In: Miranda HS, Saito CH, Dias BFS (eds) Impacto de queimadas em áreas de Cerrado e Restinga. ECL/UNB, Brasilia, pp 20–30Google Scholar
  12. Dantas-Junior AB, Musso C, Miranda HS (2018) Seed longevity and seedling emergence rate of Urochloa decumbens as influenced by sowing depth in a Cerrado soil. Grass Forage Sci 73:811–814.  https://doi.org/10.1111/gfs.12347 CrossRefGoogle Scholar
  13. Daubenmire R (1972) Ecology of Hyparrhenia rufa (Nees) in derived savanna in North-Western Costa Rica. J Appl Ecol 9:11–23.  https://doi.org/10.2307/2402043 CrossRefGoogle Scholar
  14. Ens E, Hutley LB, Rossiter-Rachor NA, Douglas MM, Setterfield SA (2015) Resource-use efficiency explains grassy weed invasion in a low-resource savanna in north Australia. Front Plant Sci 6:560.  https://doi.org/10.3389/fpls.2015.00560 CrossRefGoogle Scholar
  15. Felippe GM, Silva JCS, Cardoso VJM (1983) Germination studies in Andropogon gayanus Kunth. Revista Brasileira de Botânica 52:255–271.  https://doi.org/10.2307/2257594 Google Scholar
  16. Flores TA, Setterfield SA, Douglas MM (2005) Seedling recruitment of the exotic grass Andropogon gayanus (Poaceae) in Northern Australia. Aust J Bot 53:243–249.  https://doi.org/10.1071/BT03154 CrossRefGoogle Scholar
  17. Guido A, Vélez-Martin E, Overbeck GE, Pillar VD (2016) Landscape structure and climate affect plant invasion in subtropical grasslands. Appl Veg Sci 19:600–610.  https://doi.org/10.1111/avsc.12263 CrossRefGoogle Scholar
  18. Harp DA, Herschler K, Ong K (2008) Compost type affects Bermudagrass (Cynodon dactylon (L.) Pers.) Invasion. Tex J Agric Nat Resour 21:82–86Google Scholar
  19. Hoffmann WA, Haridasan M (2008) The invasive grass, Melinis minutiflora, inhibits tree regeneration in a Neotropical savanna. Austral Ecol 33:29–36.  https://doi.org/10.1111/j.1442-9993.2007.01787.x CrossRefGoogle Scholar
  20. Hoffmann WA, Lucatelli VMPC, Silva JF, Isaac N, Marinho MS, Albuquerque AMS, Lopes OA, Moreira SP (2004) Impact of the invasive alien Grass Melinis minutiflora at the savanna-forest ecotone in the Brazilian Cerrado. Divers Distrib 10:99–103.  https://doi.org/10.1111/j.1366-9516.2004.00063.x CrossRefGoogle Scholar
  21. IBGE (2004) Reserva Ecológica do IBGE—ambiente e plantas vasculares. Estudos e Pesquisa Informação Geográfica n.3. p70Google Scholar
  22. Ikeda FS, Victoria Filho R, Vilela L, Marchi G, Cavalieri S, Silva A (2013) Emergência e crescimento inicial de cultivares de Urochloa em diferentes profundidades de semeadura. Planta Daninha 31:71–78.  https://doi.org/10.1590/S0100-83582013000100008 CrossRefGoogle Scholar
  23. INMET (2018) http://www.inmet.gov.br/portal/. Accessed 1 Dec 2018
  24. Italiano ECC (2000) Determinação da época de colheita de sementes de Andropogon gayanus Kunth para a região Meio-Norte do Brasil. Pasturas Tropicales 22:29–33Google Scholar
  25. Klink CA (1994) Effects of clipping on size and tillering of native and African grasses of the Brazilian savannas (the cerrado). Oikos 70:365–376.  https://doi.org/10.2307/3545774 CrossRefGoogle Scholar
  26. Klink CA (1996) Germination and seedling establishment of two native and one invading African grasses species in the Brazilian cerrado. J Trop Ecol 12:139–147.  https://doi.org/10.1017/S0266467400009354 CrossRefGoogle Scholar
  27. Laura VA, Rodrigues AADC, Arias ERA, Chermouth KS, Rossi T (2009) Qualidade física e fisiológica de sementes de braquiárias comercializadas em Campo Grande-MS. Ciência e Agrotecnologia 33:326–332.  https://doi.org/10.1590/S1413-70542009000100045 CrossRefGoogle Scholar
  28. Macedo MCM (2005) Pastagens no ecossistema Cerrados: evolução das pesquisas para o desenvolvimento sustentável. In: Reunião Anual da Sociedade Brasileira de Zootecnia, 42., Goiânia. A produção animal e o foco no agronegócio: anais. Goiânia: Sociedade Brasileira de Zootecnia: Universidade Federal de Goiás, pp 56–84Google Scholar
  29. Marinho MS (2013) Estudo do fogo annual na mortalidade e no banco de sementes de Andropogon gayanus (Kunth) a Melinis minutiflora (Beauv) no Parque Nacional de Brasília. Ph.D. Thesis. Universidade de BrasíliaGoogle Scholar
  30. Marinho MS, Miranda HS (2013) Efeito do fogo anual na mortalidade e no banco de sementes de Andropogon gayanus Kunth. no Parque Nacional de Brasília/DF. Biodiversidade Brasileira 3:149–158Google Scholar
  31. Martins CR (2006) Caracterização e manejo da gramínea Melinis minutiflora P. Beauv. (Capim Gordura): Uma espécie invasora do Cerrado. Ph.D. Thesis, Universidade de BrasíliaGoogle Scholar
  32. Martins CR, Leite LL (1997) Fenologia reprodutiva de gramíneas colonizadoras de áreas degradadas no Parque Nacional de Brasília-DF, Brasil. Anais do III Simpósio Nacional de Recuperação de Áreas Degradadas, Universidade Federal de Viçosa, Viçosa, pp 317–323Google Scholar
  33. Martins CR, Hay JDV, Valls JFM, Leite LL, Henriques RPB (2007) Levantamento das gramíneas exóticas do Parque Nacional de Brasília, Distrito Federal, Brasil. Natureza & Conservação 5:23–30Google Scholar
  34. Martins CR, Hay JDV, Carmona R (2009) Potencial invasor de duas cultivares de Melinis minutiflora no Cerrado brasileiro—Características de sementes e estabelecimento de plântulas. Revista Árvore 33:713–722.  https://doi.org/10.1590/S0100-67622009000400014 CrossRefGoogle Scholar
  35. Mendonça RC, Felfili JM, Walter BMT, Silva-Júnior MC, Rezende AV, Filgueiras TS, Nogueira PE, Fagg CW (2008) Flora vascular do bioma Cerrado: checklist com 12.356 espécies. In: Sano SM, Almeida SP, Ribeiro JF (eds) Cerrado: ecologia e flora. Brasília, Embrapa Informação Tecnológica, pp 422–442Google Scholar
  36. Mortensen DA, Rauschert ESJ, Nord AN, Jones BP (2009) Forest roads facilitate the spread of invasive plants. Invasive Plant Science and Management 2:191–199.  https://doi.org/10.1614/IPSM-08-125.1 CrossRefGoogle Scholar
  37. NTG (2014) Weed Management Plan for Gamba Grass (Andropogon gayanus). https://denr.nt.gov.au/__data/assets/pdf_file/0013/400342/FINAL-Weed-Management-Plan-for-gamba-grass-2014.pdf. Accessed 6 Dec 2018
  38. Ottmar RD, Vihnanek RE, Miranda HS, Sato MN, Andrade SMA (2001). Stereo-photo series for quantifying cerrado fuels in Central Brazil–Volume I. USDA/FS General Technical ReportGoogle Scholar
  39. Paredes MVF (2016) Germinação gramíneas nativas e invasoras do cerrado após exposição a pulsos de calor. Master’s thesis, Universidade de Brasília, Brasília, BrazilGoogle Scholar
  40. Parsons JJ (1972) Spread of African pasture grasses to the American tropics. J Range Manag 25:12–17.  https://doi.org/10.2307/3896654 CrossRefGoogle Scholar
  41. Pilon NAL, Buisson E, Durigan G (2018) Restoring Brazilian savanna ground layer vegetation by topsoil and hay transfer. Restor Ecol 26:73–81.  https://doi.org/10.1111/rec.12534 CrossRefGoogle Scholar
  42. Pivello VR, Carvalho VMC, Lopes PF, Peccinini AA, Rosso S (1999) Abundance and distribution of native and alien grasses in a “Cerrado” (Brazilian savanna) Biological Reserve. Biotropica 31:71–82.  https://doi.org/10.1111/j.1744-7429.1999.tb00117.x Google Scholar
  43. Rejmánek M (1989) Invasibility of plant communities. In: Drake JA, Mooney HA, Di Castri F, Grooves RH, Kruger FJ, Rejmánek M, Williamson M (eds) Biological invasions—a global perspective. Wiley, New York, pp 369–388Google Scholar
  44. Rejmanek M, Richardson DM (1996) What attributes make some plant species more invasive? Ecology 77:1655–1661.  https://doi.org/10.2307/2265768 CrossRefGoogle Scholar
  45. Rossiter NA, Setterfield SA, Douglas MM, Hutley LB (2003) Testing the grass-fire cycle: alien grass invasion in the tropical savannas of northern Australia. Divers Distrib 9:169–176.  https://doi.org/10.1046/j.1472-4642.2003.00020.x CrossRefGoogle Scholar
  46. Sampaio AB, Schmidt IB (2013) Espécies exóticas invasoras em unidades de conservação federais do Brasil. Biodiversidade Brasileira 3:32–49Google Scholar
  47. Sato MN, Aires SS, Aires FS, Miranda HS (2015) Annual mowing prevents the recruitment of Molasses-grass in a Brazilian Savanna. Heringeriana 9:79–90Google Scholar
  48. Setterfield SA, Bellairs S, Douglas MM, Calnan T (2004) Seed bank dynamics of two exotic grass species in Australia’s Northern Savannas. In: Fourteenth Australian weeds conference, pp 555–557Google Scholar
  49. Setterfield SA, Douglas MM, Hutley LB, Welch MA (2005) Effects of canopy cover and ground disturbance on establishment of an invasive grass in an Australia Savanna. Biotropica 37:25–31.  https://doi.org/10.1111/j.1744-7429.2005.03034.x CrossRefGoogle Scholar
  50. Setterfield SA, Clifton PJ, Hutley LB, Rossiter-Rachor NA, Douglas MM (2018) Exotic grass invasion alters microsite conditions limiting woody recruitment potential in an Australian savanna. Sci Rep Nat 8:6628.  https://doi.org/10.1038/s41598-018-24704-5 CrossRefGoogle Scholar
  51. Silva JF, Castro F (1989) Fire, growth and survivorship in a neotropical savanna grass Andropogon semiberbis in Venezuela. J Trop Ecol 5:387–400.  https://doi.org/10.1017/S0266467400003849 CrossRefGoogle Scholar
  52. Simpson RL, Leck MA, Parker VT (1989) Seed banks: general concepts and methodological issues. In: Leck MA, Parker VT, Simpson RL (eds) Ecology of soil seed banks. Academic Press, San Diego, pp 3–8CrossRefGoogle Scholar
  53. Thomas D, Andrade RPDE (1984) Desempenho agronômico de cinco gramíneas tropicais sob pastejo na região dos Cerrados. Pesquisa Agropecuária Brasileira 19:1047–1051Google Scholar
  54. UNESCO (2002) Vegetação no Distrito Federal – tempo e espaço. UNESCO. 80 p. http://unesdoc.unesco.org/images/0013/001316/131644por.pdf. Accessed 30 Nov 2018
  55. Watson L (1990) The grass family, Poaceae. In: Chapman GP (ed) Reproductive versatility in the grass. Cambridge Press, Melbourne, pp 1–31Google Scholar
  56. Wickham H (2009) ggplot2: Elegant graphics for data analysis. Springer, New YorkCrossRefGoogle Scholar
  57. Williams DG, Baruch Z (2000) African grass invasion in the Americas: ecosystem consequences and the role of ecophysiology. Biol Invasions 2:123–140.  https://doi.org/10.1023/A:1010040524588 CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Departamento de EcologiaUniversidade de BrasíliaBrasíliaBrazil

Personalised recommendations