Biological Invasions

, Volume 21, Issue 4, pp 1167–1177 | Cite as

Stable isotopes reveal mild trophic modifications in a native–invasive competitive relationship

  • Eudald Pujol-BuxóEmail author
  • Gabriel M. Riaño
  • Gustavo A. Llorente
Original Paper


Temporal or evolutionary changes in the effects of invasive competitors on native species have not been studied in great depth. In this study, we explored possible modifications in the trophic shifts of native and invasive tadpoles in a set of ephemeral ponds with different amounts of time elapsed since the invasion, i.e., with different degrees of naiveté of the native species to its invasive competitor. Using stable isotopes analysis, we found that the native (Epidalea calamita) and invasive (Discoglossus pictus) species always segregated in their trophic position within ponds. Furthermore, the isotopic signature of the tadpoles was affected by the composition and diversity of the surrounding vegetal and animal communities. The amount of time elapsed since the invasion did not influence the magnitude of the trophic differences between the species, but it did affect the nature of this segregation. Segregation at the trophic level occurred most frequently during the first stages of invasion, with the invasive species occupying higher trophic levels. However, segregation was progressively attained through the consumption of different items within the same trophic level when the amount of time since invasion increased. Thus, our results point that the native species no longer uses a lower trophic level after several generations of coexistence. In contrast, changes in the trophic niche width of either species during the invasion process were largely undetected.


Amphibians Discoglossus pictus Epidalea calamita Rapid evolution Syntopy Tadpoles 



We would like to thank Felipe Campos, Berta Capellà and Àlex Garcia-Cisneros for help in the fieldwork, and two anonymous reviewers for useful comments on the manuscript. Permissions to capture were granted by the Departament d’Agricultura, Ramaderia, Pesca, Alimentació i Medi Natural de la Generalitat de Catalunya. EPB did part of the fieldwork necessary for the study during the financial support of a FPU grant (AP2010-5563, Ministerio de Educación, Cultura y Deporte, Spain). The study strictly adhered to the Guidelines for the Care and Use of Laboratory Animals of the University of Barcelona and was approved by the institution. Procedures followed the regulations that cover animal housing and experimentation in Catalonia (Spain) contained in the Generalitat de Catalunya’s Decret 214/1997 of 30th July and Llei 5/1995 of 21st June, which apply the European Directive 86/609/CEE to Spanish law in Catalonia.

Supplementary material

10530_2018_1893_MOESM1_ESM.docx (756 kb)
Supplementary material 1 (DOCX 756 kb)


  1. Abbey-Lee RN, Gaiser EE, Trexler JC (2013) Relative roles of dispersal dynamics and competition in determining the isotopic niche breadth of a wetland fish. Freshw Biol 58(4):780–792CrossRefGoogle Scholar
  2. Altig R, Whiles MR, Taylor CL (2007) What do tadpoles really eat? Assessing the trophic status of an understudied and imperiled group of consumers in freshwater habitats. Freshw Biol 52(2):386–395CrossRefGoogle Scholar
  3. Álvarez D, Nicieza AG (2002) Effects of temperature and food quality on anuran larval growth and metamorphosis. Funct Ecol 16(5):640–648CrossRefGoogle Scholar
  4. Ambrose SH, DeNiro MJ (1986) The isotopic ecology of East African mammals. Oecologia 69:395–406CrossRefGoogle Scholar
  5. Araújo MS, Guimarães PR, Svanbäck R, Pinheiro A, Guimarães P, dos Reis SF, Bolnick DI (2008) Network analysis reveals contrasting effects of intraspecific competition on individual vs. population diets. Ecology 89:1981–1993CrossRefGoogle Scholar
  6. Arribas R, Díaz-Paniagua C, Gomez-Mestre I (2014) Ecological consequences of amphibian larvae and their native and alien predators on the community structure of temporary ponds. Freshw Biol 59(9):1996–2008CrossRefGoogle Scholar
  7. Arribas R, Díaz-Paniagua C, Caut S, Gomez-Mestre I (2015) Stable isotopes reveal trophic partitioning and trophic plasticity of a larval amphibian guild. PLoS ONE 10(6):e0130897CrossRefGoogle Scholar
  8. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc B 57:289–300Google Scholar
  9. Bertolino S, Di Montezemolo NC, Preatoni DG, Wauters LA, Martinoli A (2014) A grey future for Europe: Sciurus carolinensis is replacing native red squirrels in Italy. Biol Inv 16(1):53–62CrossRefGoogle Scholar
  10. Blanchet S, Loot G, Grenouillet G, Brosse S (2007) Competitive interactions between native and exotic salmonids: a combined field and laboratory demonstration. Ecol Freshw Fish 16(2):133–143CrossRefGoogle Scholar
  11. Boix D, Sala J, Quintana XD, Moreno-Amich R (2004) Succession of the animal community in a Mediterranean temporary pond. J N Am Benthol Soc 23(1):29–49CrossRefGoogle Scholar
  12. Bolnick DI, Ingram T, Stutz WE, Snowberg LK, Lau OL, Paull JS (2010) Ecological release from interspecific competition leads to decoupled changes in population and individual niche width. Proc R Soc Lond B Biol Sci 277(1689):1789–1797CrossRefGoogle Scholar
  13. Bourke P, Magnan P, Rodríguez MA (1999) Phenotypic responses of lacustrine brook charr in relation to the intensity of interspecific competition. Evol Ecol 13(1):19–31CrossRefGoogle Scholar
  14. Brown LE, Rosati RR (1997) Effects of three different diets on survival and growth of larvae of the African clawed frog Xenopus laevis. Progress Fish Cultur 59(1):54–58CrossRefGoogle Scholar
  15. Burnham KP, Anderson DR (2003) Model selection and multimodel inference: a practical information-theoretic approach. Springer, New YorkGoogle Scholar
  16. Cabrera-Guzmán E, Crossland MR, Shine R (2013) Mechanisms of competition between tadpoles of Australian frogs (Litoria spp.) and invasive cane toads (Rhinella marina). Freshw Biol 58(12):2584–2600CrossRefGoogle Scholar
  17. Calcagno V (2013) Glmulti: model selection and multimodel inference made easy. R package version 1.0.7. Accessed Jan 2017
  18. Campeny R (2001) Ecologia de les larves d’amfibis anurs al Montseny. PhD thesis, University of BarcelonaGoogle Scholar
  19. Caut S, Angulo E, Courchamp F (2008) Caution on isotopic model use for analyses of consumer diet. Can J Zool 86(5):438–445CrossRefGoogle Scholar
  20. Caut S, Angulo E, Díaz-Paniagua C, Gomez-Mestre I (2013) Plastic changes in tadpole trophic ecology revealed by stable isotope analysis. Oecologia 173(1):95–105CrossRefGoogle Scholar
  21. Codron D, Hull J, Brink JS, Codron J, Ward D, Clauss M (2011) Effect of competition on niche dynamics of syntopic grazing ungulates: contrasting the predictions of habitat selection models using stable isotope analysis. Evol Ecol Res 13(3):217–235Google Scholar
  22. Cox GW (2004) Alien species and evolution. Island Press, WashingtonGoogle Scholar
  23. Crowder LB (1986) Ecological and morphological shifts in Lake Michigan fishes: glimpses of the ghost of competition past. In: Contemporary studies on fish feeding: the proceedings of GUTSHOP’84. Springer, Dordrecht, pp 147–158Google Scholar
  24. David P, Thebault E, Anneville O, Duyck PF, Chapuis E, Loeuille N (2017) Impacts of invasive species on food webs: a review of empirical data. Adv Ecol Res 56:1–60CrossRefGoogle Scholar
  25. Diaz-Paniagua C (1985) Larval diets related to morphological characters of five anuran species in the Biological Reserve of Doñana (Huelva, Spain). Amphib Reptil 6:307–322CrossRefGoogle Scholar
  26. Enriquez-Urzelai U, San Sebastián O, Garriga N, Llorente GA (2013) Food availability determines the response to pond desiccation in anuran tadpoles. Oecologia 173(1):117–127CrossRefGoogle Scholar
  27. Escoriza D, Boix D (2012) Assessing the potential impact of an invasive species on a Mediterranean amphibian assemblage: a morphological and ecological approach. Hydrobiologia 680(1):233–245CrossRefGoogle Scholar
  28. Gannes LZ, O’Brien DM, Del Rio CM (1997) Stable isotopes in animal ecology: assumptions, caveats, and a call for more laboratory experiments. Ecology 78(4):1271–1276CrossRefGoogle Scholar
  29. Geniez P, Cheylan M (2012) Les amphibiens et les reptiles du Languedoc-Roussillon et régions limitrophes: atlas biogéographique. Biotope, Mèze; Muséum national d'Histoire naturelle, ParisGoogle Scholar
  30. Gosner KL (1960) A simplified table for staging anuran embryos and larvae with notes on identification. Herpetologica 16(3):183–190Google Scholar
  31. Griffith H (1992) Carbon isotope discrimination and the integration of carbon assimilation pathways in terrestrial CAM plants. Plant Cell Environ 15:1051–1062CrossRefGoogle Scholar
  32. HilleRisLambers J, Ettinger AK, Ford KR, Haak DC, Horwith M, Miner BE et al (2013) Accidental experiments: ecological and evolutionary insights and opportunities derived from global change. Oikos 122(12):1649–1661CrossRefGoogle Scholar
  33. Jackson AL, Parnell AC, Inger R, Bearhop S (2011) Comparing isotopic niche widths among and within communities: SIBER—stable isotope Bayesian ellipses in R. J Anim Ecol 80:595–602CrossRefGoogle Scholar
  34. Kiesecker JM, Blaustein AR, Miller CL (2001) Potential mechanisms underlying the displacement of native red-legged frogs by introduced bullfrogs. Ecology 82(7):1964–1970CrossRefGoogle Scholar
  35. Koch PL, Heisinger J, Moss C, Carlson RW, Fogel ML, Behrensmeyer AK (1995) Isotopic tracking of change in diet and habitat use of African elephants. Science 267:1340–1343CrossRefGoogle Scholar
  36. Kupferberg SJ (1997a) Bullfrog (Rana catesbeiana) invasion of a California river: the role of larval competition. Ecology 78(6):1736–1751CrossRefGoogle Scholar
  37. Kupferberg SJ (1997b) The role of larval diet in anuran metamorphosis. Am Zool 37(2):146–159CrossRefGoogle Scholar
  38. Layman CA, Arrington DA, Montaña CG, Post DM (2007) Can stable isotope ratios provide for community-wide measures of trophic structure? Ecology 88(1):42–48CrossRefGoogle Scholar
  39. Llorente GA, Montori A, Pujol-Buxó E (2015) El sapillo pintojo mediterráneo (Discoglossus pictus) en la península ibérica. Bol Asoc Herpetol Esp 26(2):12–17Google Scholar
  40. Martins F, Oom MDM, Rebelo R, Rosa GM (2013) Differential effects of dietary protein on early life-history and morphological traits in natterjack toad (Epidalea calamita) tadpoles reared in captivity. Zoobiology 32(4):457–462Google Scholar
  41. Minagawa M, Wada E (1984) Stepwise enrichment of 15N along food chains: further evidence and the relation between δ15N and animal age. Geochim Cosmochim Acta 48(5):1135–1140CrossRefGoogle Scholar
  42. Morey S, Reznick D (2001) Effects of larval density on postmetamorphic spadefoot toads (Spea hammondii). Ecology 82(2):510–522CrossRefGoogle Scholar
  43. Nunes AL, Orizaola G, Laurila A, Rebelo R (2014) Rapid evolution of constitutive and inducible defenses against an invasive predator. Ecology 95(6):1520–1530CrossRefGoogle Scholar
  44. Oromi N, Sanuy D, Sinsch U (2012) Altitudinal variation of demographic life-history traits does not mimic latitudinal variation in natterjack toads (Bufo calamita). Zoology 115(1):30–37CrossRefGoogle Scholar
  45. Oromi N, Pujol-Buxó E, San Sebastián O, Llorente GA, Hammou MA, Sanuy D (2016) Geographical variations in adult body size and reproductive life history traits in an invasive anuran, Discoglossus pictus. Zoology 119(3):216–223CrossRefGoogle Scholar
  46. Pérez-Santigosa N, Florencio M, Hidalgo-Vila J, Díaz-Paniagua C (2011) Does the exotic invader turtle, Trachemys scripta elegans, compete for food with coexisting native turtles? Amphib Reptil 32(2):167–175CrossRefGoogle Scholar
  47. Phillips BL, Shine R (2006) An invasive species induces rapid adaptive change in a native predator: cane toads and black snakes in Australia. Proc R Soc Lond B Biol Sci 273(1593):1545–1550CrossRefGoogle Scholar
  48. Pujol-Buxó E, Garriga N, Richter-Boix A, Llorente GA (2016) Growth strategies of tadpoles along the pond permanency gradient. Evol Ecol 30(6):1117–1132CrossRefGoogle Scholar
  49. Pujol-Buxó E, García-Guerrero C, Llorente GA (2017) Alien versus predators: effective induced defenses of an invasive frog in response to native predators. J Zool 301(3):227–234CrossRefGoogle Scholar
  50. R Core Team (2015) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.
  51. Richter-Boix A, Garriga N, Montori A, Franch M, San Sebastián O, Villero D, Llorente GA (2013) Effects of the non-native amphibian species Discoglossus pictus on the recipient amphibian community: niche overlap, competition and community organization. Biol Inv 15(4):799–815CrossRefGoogle Scholar
  52. San Sebastián O, Navarro J, Llorente GA, Richter-Boix A (2015a) Trophic strategies of a non-native and a native amphibian species in shared ponds. PLoS ONE 10(6):e0130549CrossRefGoogle Scholar
  53. San Sebastián O, Pujol-Buxó E, Garriga N, Richter-Boix A, Llorente GA (2015b) Differential trophic traits between invasive and native anuran tadpoles. Aquat Inv 10(4):475–484CrossRefGoogle Scholar
  54. Schiesari L, Werner EE, Kling GW (2009) Carnivory and resource-based niche differentiation in anuran larvae: implications for food web and experimental ecology. Freshw Biol 54(3):572–586CrossRefGoogle Scholar
  55. Smith KG (2005) Effects of nonindigenous tadpoles on native tadpoles in Florida: evidence of competition. Biol Conserv 123(4):433–441CrossRefGoogle Scholar
  56. Stuart YE, Campbell TS, Hohenlohe PA, Reynolds RG, Revell LJ, Losos JB (2014) Rapid evolution of a native species following invasion by a congener. Science 346(6208):463–466CrossRefGoogle Scholar
  57. Syväranta J, Haemaelaeinen H, Jones RI (2006) Within-lake variability in carbon and nitrogen stable isotope signatures. Freshw Biol 51(6):1090–1102CrossRefGoogle Scholar
  58. Tieszen LL, Boutton TW, Tesdahl KG, Slade NA (1983) Fractionation and turnover of stable carbon isotopes in animal tissues: implications for δ13C analysis of diet. Oecologia 57(1):32–37CrossRefGoogle Scholar
  59. Trussell GC, Nicklin MO (2002) Cue sensitivity, inducible defense, and trade-offs in a marine snail. Ecology 83(6):1635–1647CrossRefGoogle Scholar
  60. Turner TF, Collyer ML, Krabbenhoft TJ (2010) A general hypothesis-testing framework for stable isotope ratios in ecological studies. Ecology 91(8):2227–2233CrossRefGoogle Scholar
  61. Van Valen L (1965) Morphological variation and width of ecological niche. Am Nat 99(908):377–390CrossRefGoogle Scholar
  62. Whiles MR, Lips KR, Pringle CM, Kilham SS, Bixby RJ, Brenes R et al (2006) The effects of amphibian population declines on the structure and function of Neotropical stream ecosystems. Front Ecol Environ 4(1):27–34CrossRefGoogle Scholar
  63. Wintrebert P (1908) Présence à Banyuls-sur-Mer (Pyrénées-Orientales) du Discoglossus pictus Otth. Bull Soc Zool Fr 33:54Google Scholar
  64. Woodland RJ, Magnan P, Glémet H, Rodríguez MA, Cabana G (2012) Variability and directionality of temporal changes in δ13C and δ15N of aquatic invertebrate primary consumers. Oecologia 169(1):199–209CrossRefGoogle Scholar
  65. Zangari F, Cimmaruta R, Nascetti G (2006) Genetic relationships of the western Mediterranean painted frogs based on allozymes and mitochondrial markers: evolutionary and taxonomic inferences (Amphibia, Anura, Discoglossidae). Biol J Linn Soc 87(4):515–536CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Department of Evolutionary Biology, Ecology and Environmental Sciences, Faculty of BiologyUniversity of BarcelonaBarcelonaSpain
  2. 2.IrBio, Institut de Recerca de la BiodiversitatUniversity of BarcelonaBarcelonaSpain

Personalised recommendations