Advertisement

Fire as driver of the expansion of Paraserianthes lophantha (Willd.) I. C. Nielsen in SW Europe

  • J. García-Duro
  • O. Cruz
  • M. Casal
  • O. Reyes
Original Paper

Abstract

Paraserianthes lophantha (Willd.) I. C. Nielsen is a plant species native to SW Australia that has recently invaded temperate ecosystems in Europe and other areas in the world. Since it has been found in burnt areas and its expansion could be promoted by forest fires, the germination response of seeds to fire factors (heat, smoke, ash and charcoal) was analyzed. Furthermore, stochastic post-fire invasion models were developed to check the impact of one-off and repeated forest fires. The spreading pattern after fire was modeled to provide accurate forecasts for future fires. The model was parameterized using data recorded after the 2013 forest fire in the Natura 2000 site Monte Pindo. Germination response is mainly modified by heat, which breaks seed dormancy at moderate temperature and kills seeds at high temperatures. Smoke, ash and charcoal did not have relevant influence on seed germination except large amounts of ash, which prevented seed germination. Neither charcoal origin (from native or from exotic species) had a significant effect on P. lophantha germination. The invasion model demonstrated the significant role of forest fires promoting P. lophantha spreading. Recurrent fires promote the spreading of invasive species, threatening natural plant communities. However, the expansion of the species was not exclusively linked to forest fires: anthropic systems, edges of agricultural areas and old fields were particularly affected by P. lophantha expansion. Some control methods based on the reproductive behavior and spreading pattern of P. lophantha were proposed in order to prevent new invasions and manage invaded areas.

Keywords

Forest fire Invasive species Germination Spatial stochastic models Spreading pattern 

Notes

Acknowledgements

This work was supported by the Spanish Ministry of Economy, Industry and Competitiveness, Spanish Ministry of Science, Innovation and Universities and the European Regional Development Fund (ERDF) in the framework of the GESFIRE (AGL2013-48189-C2-2-R) and FIRESEVES (AGL2017-86075-C2-2-R) projects. Finally, we thank the reviewers for their constructive comments.

Supplementary material

10530_2018_1910_MOESM1_ESM.tif (2 mb)
Examples of P. lophantha stands in Monte Pindo 4 years after fire. Left: Outer view of a stand. Right: Inner structure of a stand (TIFF 2063 kb)
10530_2018_1910_MOESM2_ESM.png (201 kb)
Root-mean-square error (RMSE) of the four functions performed for the spreading model parameterization (PNG 201 kb)
10530_2018_1910_MOESM3_ESM.jpg (443 kb)
Supplementary material 3 (JPEG 444 kb)

References

  1. Adair RJ (2008) Biological control of Australian native plants, in Australia, with an emphasis on acacias. Muelleria 26:67–78Google Scholar
  2. Arán D, García-Duro J, Reyes O, Casal M (2012) Reproductive ecology of Conyza canadensis (L.) Cronq in relation to fire and Climate change. In: GEIB Grupo Especialista en invasiones Biológicas (ed) EEI 2012. Notas Científicas. Serie Técnica, vol 5, pp 174–177Google Scholar
  3. Arán D, García-Duro J, Reyes O, Casal M (2013) Fire and invasive species: modifications in the germination potential of Acacia melanoxylon, Conyza canadensis and Eucalyptus globulus. For Ecol Manag 302:7–13CrossRefGoogle Scholar
  4. Arán D, García-Duro J, Cruz O, Casal M, Reyes O (2017) Understanding biological characteristics of Acacia melanoxylon in relation to fire to implement control measurements. Ann For Sci 74:61CrossRefGoogle Scholar
  5. Auld TD, O’Connell MA (1991) Predicting patterns of post-fire germination in 35 eastern Australian Fabaceae. Aust J Ecol 16:53–70.  https://doi.org/10.1111/j.1442-9993.1991.tb01481.x CrossRefGoogle Scholar
  6. Baeza MJ, Roy J (2008) Germination of an obligate seeder (Ulex parviflorus) and consequences for wildfire management. For Ecol Manag 256:685–693CrossRefGoogle Scholar
  7. Beckman NG, Neuhauser C, Muller-Landau HC (2012) The interacting effects of clumped seed dispersal and distance- and density-dependent mortality on seedling recruitment patterns. J Ecol 100:862–873CrossRefGoogle Scholar
  8. Bell DT, Rokich DP, McChesney CJ, Plummer JA (1995) Effects of temperature, light and gibberellic acid on the germination of seeds of 43 species native to Western Australia. J Veg Sci 6:797–806.  https://doi.org/10.2307/3236393 CrossRefGoogle Scholar
  9. Bivand R, Lewin-Koh N (2016). maptools: tools for reading and handling spatial objects. R package version 0.8-39. https://CRAN.R-project.org/package=maptools. Accessed 19 Feb 2018
  10. Bivand R, Rundel C. (2016). rgeos: interface to geometry engine—open source (GEOS). R package version 0.3-19. https://CRAN.R-project.org/package=rgeos. Accessed 19 Feb 2018
  11. Bivand R, Keitt T, Rowlingson B (2016). rgdal: bindings for the geospatial data abstraction library. R package version 1.1-10. https://CRAN.R-project.org/package=rgdal. Accessed 19 Feb 2018
  12. Bradstock RA, Auld TD (1995) Soil temperatures during experimental bushfires in relation to fire intensity: consequences for legume germination and fire management in south-eastern Australia. J Appl Ecol 32:76–84CrossRefGoogle Scholar
  13. Cavallero L, Raffaele E (2010) Fire enhances the ‘competition-free’ space of an invader shrub: Rosa rubiginosa in northwestern Patagonia. Biol Invasions 12(10):3395–3404CrossRefGoogle Scholar
  14. Cavanagh HT, Langkamp PJ (1987) Germination of hard-seeded species (Order Fabales). In: Langkamp PJ (ed) Germination of Australian native plant seed. Inkata Press, SydneyGoogle Scholar
  15. Chytrý M, Pysek P, Wild J, Pino J, Maskell LC, Vila M (2009) European map of alien plant invasions based on the quantitative assessment across habitats. Divers Distrib 15:98–107CrossRefGoogle Scholar
  16. Cruz O, García-Duro J, Casal M, Reyes O (2017) Can the mother plant age of Acacia melanoxylon (Leguminosae) modulate the germinative response to fire? Aust J Bot 65:593–600.  https://doi.org/10.1071/BT17083 CrossRefGoogle Scholar
  17. D’Antonio C, Meyerson LA (2002) Exotic plant species as problems and solutions in ecological restoration: a synthesis. Restor Ecol 10:703–713CrossRefGoogle Scholar
  18. Davis MA, Grime JP, Thompson K (2000) Fluctuating resources in plant communities: a general theory of invasibility. J Ecol 88:528–534.  https://doi.org/10.1046/j.1365-2745.2000.00473.x CrossRefGoogle Scholar
  19. DeBano L, Dunn P, Conrad C (1977) Fire’s effect on physical and chemical properties of chaparral soils. USDA Forest Service General Technical Report WO. Washington DC, USAGoogle Scholar
  20. Derkx MPM, Brouwer JHD, van Breda PJM, Helsen HHM, Hoffman MHA, Hop MECM (2015) Preparatory work to support pan European pest risk assessment: Trichilogaster acaciaelongifoliae. Stichting Dienst Landbouwkundig Onderzoek (DLO). The Netherlands. EFSA supporting publication 2015- EN-764Google Scholar
  21. Díaz-Fierros F, Benito E, Vega JA, Castelao A, Soto B, Pérez R, Taboada T (1990) Fire in ecosystem dynamics. In: Goldammer JG, Jenkins MJ (eds) Solute loss and soil erosion in burnt soil from Galicia (NW Spain), vol 1. SPB Academic Publishing, Amsterdam, pp 103–116Google Scholar
  22. Didham RK, Tylianakis JM, Gemmell NJ, Rand TA, Ewers RM (2007) Interactive effects of habitat modification and species invasion on native species decline. Trends Ecol Evol 22(9):489–496.  https://doi.org/10.1016/j.tree.2007.07.001 CrossRefGoogle Scholar
  23. DOGA 2007/04/18 (2007). www.xunta.gal/dog
  24. Fick SE, Hijmans RJ (2017) Worldclim 2: new 1-km spatial resolution climate surfaces for global land areas. Int J Climatol 37:4302–4315.  https://doi.org/10.1002/joc.5086 CrossRefGoogle Scholar
  25. Gassó N, Sol D, Pino J, Dana ED, Lloret F, Sanz-Elorza M, Sobrino E, Vilà M (2009) Exploring species attributes and site characteristics to assess plant invasions in Spain. Divers Distrib 15:50–58CrossRefGoogle Scholar
  26. GBIF: The Global Biodiversity Information Facility (2017). http://www.gbif.org
  27. Gelman A, Su Y (2016). arm: data analysis using regression and multilevel/hierarchical models. R package version 1.9-3. https://CRAN.R-project.org/package=arm. Accessed 19 Feb 2018
  28. González-Rabanal F, Casal M (1995) Effect of high temperatures and ash on germination of ten species from gorse shrubland. Vegetatio 116:123–131CrossRefGoogle Scholar
  29. Heger T, Trepl L (2003) Predicting biological invasions. Biol Invasions 5:313–321.  https://doi.org/10.1023/B:BINV.0000005568.44154.12 CrossRefGoogle Scholar
  30. Herrera J (1986) Flowering and fruiting phenology in the coastal shrublands of Doñana, south Spain. Vegetatio 68:91–98Google Scholar
  31. Herrero-Borgoñón JJ (2007) Dos mimosoideas (leguminosae) nuevas para la flora castellonense. Flora Montiberica 37:26–28Google Scholar
  32. Hijmans RJ (2016). raster: geographic data analysis and modeling. R package version 2.5-8. https://CRAN.R-project.org/package=raster. Accessed 19 Feb 2018
  33. Hothorn T, Bretz F, Westfall P (2008) Simultaneous inference in general parametric models. Biom J 50(3):346–363CrossRefGoogle Scholar
  34. Mandle L, Bufford JL, Schmidt IB, Daehler CC (2011) Woody exotic plant invasions and fire: reciprocal impacts and consequences for native ecosystems. Biol Invasions 13:1815–1827.  https://doi.org/10.1007/s10530-011-0001-3 CrossRefGoogle Scholar
  35. Masocha M, Skidmore AK, Poshiwa X, Prins HHT (2011) Frequent burning promotes invasions of alien plants into a mesic African savanna. Biol Invasions 13:1641–1648.  https://doi.org/10.1007/s10530-010-9921-6 CrossRefGoogle Scholar
  36. McLean P, Gallien L, Wilson JRU, Gaertner M, Richardson DM (2017) Small urban centres as launching sites for plant invasions in natural areas: insights from South Africa. Biol Invasions 19:3541–3555.  https://doi.org/10.1007/s10530-017-1600-4 CrossRefGoogle Scholar
  37. Moreira F, Rego FC, Ferreira PG (2001) Temporal (1958–1995) patterns of change in a cultural landscape of northwestern Portugal: implications for fire occurrence. Landsc Ecol 16:557–567CrossRefGoogle Scholar
  38. Mouillot D, Lepretre A, Andrei-Ruiz MC, Mouillot F, Viale D (2000) A stochastic model for the spatial distribution of species based on an aggregation–repulsion rule. Popul Ecol 42:293–303CrossRefGoogle Scholar
  39. Muñoz A, García-Duro J, Álvarez R, Pesqueira XM, Reyes O, Casal M (2012) Structure and diversity of Erica ciliaris and Erica tetralix heathlands at different successional stages after cutting. J Environ Manag 94:34–40.  https://doi.org/10.1016/j.jenvman.2011.08.006 CrossRefGoogle Scholar
  40. Muñoz A, Basanta M, Díaz-vizcaíno E, Casal M (2014) Land use changes effect on floristic composition, diversity and surface occupied by Erica ciliaris and Erica tetralix heathlands of NW Spain. Land Degrad Dev 25:532–540.  https://doi.org/10.1002/ldr.2179 CrossRefGoogle Scholar
  41. Ohlson M, Tryterud E (2000) Interpretation of the charcoal record in forest soils: forest fires and their production and deposition of macroscopic charcoal. Holocene 10(4):519–525CrossRefGoogle Scholar
  42. Pauchard A, García RA, Peña E, González C, Cavieres LA, Bustamante RO (2008) Positive feedbacks between plant invasions and fire regimes: Teline monspessulana (L.) K. Koch (Fabaceae) in central Chile. Biol Invasions 10:547–553.  https://doi.org/10.1007/s10530-007-9151-8 CrossRefGoogle Scholar
  43. Pinheiro J, Bates D, DebRoy S, Sarkar D, R Core Team (2018) nlme: linear and nonlinear mixed effects models. https://CRAN.R-project.org/package=nlme. Accessed 19 Feb 2018
  44. Puentes A, Pías B, Basanta M (2016) Vertical structure of Erica umbellata, a representative species of European Ibero-Atlantic dry heaths. Plant Biosyst 152:110–119.  https://doi.org/10.1080/11263504.2016.1255270 CrossRefGoogle Scholar
  45. Ramil Rego P et al (2001) Historia ecológica de Galicia: modificaciones del paisaje a lo largo del Cenozoico. In: Guitián-Rivera L, Pérez-Alberti A (eds) Historia ecológica de Galicia. SEMATA Ciencias Sociais e Humanidades, vol 13, pp 67–103Google Scholar
  46. Rascher KG, Große-Stoltenberg A, Máguas C, Alves Meira-Neto JA, Werner C (2011) Acacia longifolia invasion impacts vegetation structure and regeneration dynamics in open dunes and pine forests. Biol Invasions 13:1099–1113.  https://doi.org/10.1007/s10530-011-9949-2 CrossRefGoogle Scholar
  47. Reyes O, Casal M (2004) Effects of forest fire ash on germination and early growth of four pinus species. Plant Ecol 175:81–89.  https://doi.org/10.1023/B:VEGE.0000048089.25497.0c CrossRefGoogle Scholar
  48. Reyes O, Casal M (2006) Seed germination of Quercus robur, Q. pyrenaica and Q. ilex and the effects of smoke, heat, ash and charcoal. Ann For Sci 63:205–212.  https://doi.org/10.1051/forest:2005112 CrossRefGoogle Scholar
  49. Reyes O, Casal M (2008) Regeneration models and plant regenerative types related to the intensity of fire in Atlantic shrubland and woodland species. J Veg Sci 19:575–589.  https://doi.org/10.3170/2008-8-18412 CrossRefGoogle Scholar
  50. Reyes O, Trabaud L (2009) Germination behaviour of 14 Mediterranean species in relation to fire factors: smoke and heat. Plant Ecol 202:113.  https://doi.org/10.1007/s11258-008-9532-9 CrossRefGoogle Scholar
  51. Reyes O, Casal M, Trabaud L (1997) The influence of population, fire and time of dissemination on the germination of Betula pendula seeds. Plant Ecol 133:201–208.  https://doi.org/10.1023/A:1009751513547 CrossRefGoogle Scholar
  52. Reyes O, Basanta M, Casal M, Díaz-Vizcaíno E (2000) Functioning and dynamics of Woody plant ecosystems in Galicia (NW Spain). In: Trabaud L (ed) Life and environment in the Mediterranean. WIT Press, Southamptom, pp 1–41Google Scholar
  53. Reyes O, García-Duro J, Salgado J (2015a) Fire affects soil organic matter and the emergence of Pinus radiata seedlings. Ann For Sci 72:267–275.  https://doi.org/10.1007/s13595-014-0427-8 CrossRefGoogle Scholar
  54. Reyes O, Kaal J, Arán D, Gago R, Bernal J, García-Duro J, Basanta M (2015b) The effects of ash and black carbon on germination of different tree species. Fire Ecol 11(1):119–133.  https://doi.org/10.4996/fireecology.1101119 CrossRefGoogle Scholar
  55. Richardson DM, Cowling RM, Le Maitre DC (1990) Assessing the risk of invasive success in Pinus and Banksia in South African mountain fynbos. J Veg Sci 1:629–642CrossRefGoogle Scholar
  56. Rivas M, Reyes O, Casal M (2006) Influence of heat and smoke treatments on the germination of six leguminous shrubby species. Int J Wildland Fire 15:73–80.  https://doi.org/10.1071/WF05008 CrossRefGoogle Scholar
  57. Rodríguez de Sancho MJ (2006) Incidencia ambiental de los incendios. Ingeniería y Territorio 74:60–67Google Scholar
  58. R Core Team (2016) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. https://www.R-project.org/. Accessed 19 Feb 2018
  59. SIOSE. Sistema de Ocupación del Suelo de España (2018) http://www.siose.es
  60. Smith-Ramirez C, Armesto JJ (1994) Flowering and fruiting patterns in the temperate rainforest of Chiloe, Chile–ecologies and climatic constraints. J Ecol 82(2):353–365CrossRefGoogle Scholar
  61. Soto B, Basanta R, Díaz-Fierros F (1997) Effects of burning on nutrient balance in an area of gorse (Ulex europaeus L.) scrub. Sci Total Environ 204:271–281.  https://doi.org/10.1016/S0048-9697(97)00185-X CrossRefGoogle Scholar
  62. Thomas PB, Morris EC, Auld TD (2003) Interactive effects of heat shock and smoke ongermination of nine species forming soil seed banks within the Sydney region. Austral Ecol 28:674–678CrossRefGoogle Scholar
  63. Trabaud L (1979) Etude du comportement du feu dans la Garrigue de Chêne kermès à partir des températures et des vitesses de propagation. Ann Sci Forest 36:13–38.  https://doi.org/10.1051/forest/19790102 CrossRefGoogle Scholar
  64. Turner R (2016). deldir: delaunay triangulation and Dirichlet (Voronoi) tessellation. R package version 0.1-12. https://CRAN.R-project.org/package=deldir. Accessed 19 Feb 2018
  65. Weber E (2003) Invasive plants of the world. CABI Publishing, CAB International, WallingfordGoogle Scholar
  66. Xunta de Galicia (2017) https://www.xunta.gal. Accessed 19 Feb 2018

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Área de Ecoloxía, Dpto. de Bioloxía Funcional, Facultade de BioloxíaUniversidade de Santiago de CompostelaSantiago de CompostelaSpain

Personalised recommendations