Efficient markerless gene deletions in Pseudomonas protegens Pf-5 using a upp-based counterselective system

  • Xing-lian Wang
  • Si-yu Dai
  • Qing-jiao Wang
  • Hui-nan Xu
  • Hong-qiu Shi
  • Yu-bin Kang
  • Dai-ming ZhaEmail author
Original Research Paper



Developing a counterselective system for efficient markerless gene deletions in biocontrol strain P. protegens Pf-5.


We successfully implemented a markerless deletion of upp in Pf-5 to obtain the 5-FU resistant strain Pf5139. With this strain, we performed markerless gene deletions for each component of Gac/Rsm system and a 17 kb DNA fragment with the deletion ratio of 20 to 50%, and efficiently constructed a strain with triple deletions based on the suicide plasmid pJQ200UPP. In addition, there is no obvious connection between the deleted fragment length and the deletion ratio.


The upp-based counterselective system in this study is efficient and valuable for markerless gene deletions in Pf-5, indicating that it has great potential in the study of gene function and in the application of genome reduction for Pseudomonas strains.


Counterselective system Markerless gene deletion Pseudomonas protegens Upp 



This work was supported by the National Natural Science Foundation of P. R. China (31760534) to Dai-ming Zha.

Compliance with ethical standards

Conflict of interest

All authors declare no conflict of interest.


  1. Burrowes E, Baysse C, Adams C, O’Gara F (2006) Influence of the regulatory protein RsmA on cellular functions in Pseudomonas aeruginosa PAO1, as revealed by transcriptome analysis. Microbiology 152(2):405–418CrossRefGoogle Scholar
  2. Fabret C, Ehrlich SD, Noirot P (2002) A new mutation delivery system for genome-scale approaches in Bacillus subtilis. Mol Microbiol 46(1):25–36CrossRefGoogle Scholar
  3. Goh YJ, Azcárate-Peril MA, O’Flaherty S, Durmaz E, Valence F, Jardin J, Lortal S, Klaenhammer TR (2009) Development and application of a upp-based counterselective gene replacement system for the study of the S-layer protein SlpX of Lactobacillus acidophilus NCFM. Appl Environ Microbiol 75(10):3093–3105CrossRefGoogle Scholar
  4. Graf N, Altenbuchner J (2011) Development of a method for markerless gene deletion in Pseudomonas putida. Appl Environ Microbiol 77(15):5549–5552CrossRefGoogle Scholar
  5. Hassan KA, Johnson A, Shaffer BT, Ren Q, Kidarsa TA, Elbourne LD, Hartney S, Duboy R, Goebel NC, Zabriskie TM, Paulsen IT, Loper JE (2010) Inactivation of the GacA response regulator in Pseudomonas fluorescens Pf-5 has far-reaching transcriptomic consequences. Environ Microbiol 12(4):899–915CrossRefGoogle Scholar
  6. Howell CR, Stipanovic RD (1979) Control of Rhizoctonia solani on cotton seedlings with Pseudomonas fluorescens and with an antibiotic produced by the bacterium. Phytopathology 69(5):480–482CrossRefGoogle Scholar
  7. Jean-Pierre F, Perreault J, Déziel E (2015) Complex autoregulation of the post-transcriptional regulator RsmA in Pseudomonas aeruginosa. Microbiology 161(9):1889–1896CrossRefGoogle Scholar
  8. Kaczmarczyk A, Vorholt JA, Francez-Charlot A (2012) Markerless gene deletion system for sphingomonads. Appl Environ Microbiol 78(10):3774–3777CrossRefGoogle Scholar
  9. Kay E, Dubuis C, Haas D (2005) Three small RNAs jointly ensure secondary metabolism and biocontrol in Pseudomonas fluorescens CHA0. Proc Natl Acad Sci USA 102(47):17136–17141CrossRefGoogle Scholar
  10. Kostner D, Peters B, Mientus M, Liebl W, Ehrenreich A (2013) Importance of codB for new codA-based markerless gene deletion in Gluconobacter strains. Appl Microbiol Biotechnol 97(18):8341–8349CrossRefGoogle Scholar
  11. Krzeslak J (2009) Pseudomonas as a microbial enzyme factory. Department of Pharmaceutical Biology of the University of Groningen, GroningenGoogle Scholar
  12. Lapouge K, Schubert M, Allain FH, Haas D (2008) Gac/Rsm signal transduction pathway of gamma-proteobacteria: from RNA recognition to regulation of social behaviour. Mol Microbiol 67(2):241–253CrossRefGoogle Scholar
  13. Ma W, Wang X, Mao Y, Wang Z, Chen T, Zhao X (2015) Development of a markerless gene replacement system in Corynebacterium glutamicum using upp as a counter-selection marker. Biotechnol Lett 37(3):609–617CrossRefGoogle Scholar
  14. MacNeil DJ, Occi JL, Gewain KM, MacNeil T, Gibbons PH, Ruby CL, Danis SJ (1992) Complex organization of the Streptomyces avermitilis genes encoding the avermectin polyketide synthase. Gene 115(1–2):119–125CrossRefGoogle Scholar
  15. Paulsen IT, Press CM, Ravel J, Kobayashi DY, Myers GS, Mavrodi DV, DeBoy RT, Seshadri R, Ren Q, Madupu R, Dodson RJ, Durkin AS, Brinkac LM, Daugherty SC, Sullivan SA, Rosovitz MJ, Gwinn ML, Zhou L, Schneider DJ, Cartinhour SW, Nelson WC, Weidman J, Watkins K, Tran K, Khouri H, Pierson EA, Pierson LS III, Thomashow LS, Loper JE (2005) Complete genome sequence of the plant commensal Pseudomonas fluorescens Pf-5. Nat Biotechnol 23(7):873–878CrossRefGoogle Scholar
  16. Peters B, Junker A, Brauer K, Mühlthaler B, Kostner D, Mientus M, Liebl W, Ehrenreich A (2013) Deletion of pyruvate decarboxylase by a new method for efficient markerless gene deletions in Gluconobacter oxydans. Appl Microbiol Biotechnol 97(6):2521–2530CrossRefGoogle Scholar
  17. Quandt J, Hynes MF (1993) Versatile suicide vectors which allow direct selection for gene replacement in gram-negative bacteria. Gene 127(1):15–21CrossRefGoogle Scholar
  18. Ramette A, Frapolli M, Fischer-Le Saux M, Gruffaz C, Meyer JM, Défago G, Sutra L, Moënne-Loccoz Y (2011) Pseudomonas protegens sp. nov., widespread plant-protecting bacteria producing the biocontrol compounds 2,4-diacetylphloroglucinol and pyoluteorin. Syst Appl Microbiol 34(3):180–188CrossRefGoogle Scholar
  19. Romeo T, Vakulskas CA, Babitzke P (2013) Post-transcriptional regulation on a global scale: form and function of Csr/Rsm systems. Environ Microbiol 15(2):313–324CrossRefGoogle Scholar
  20. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, New YorkGoogle Scholar
  21. Song L, Cui H, Tang L, Qiao X, Liu M, Jiang Y, Cui W, Li Y (2014) Construction of upp deletion mutant strains of Lactobacillus casei and Lactococcus lactis based on counterselective system using temperature-sensitive plasmid. J Microbiol Methods 102:37–44CrossRefGoogle Scholar
  22. Wang Y, Zhang C, Gong T, Zuo Z, Zhao F, Fan X, Yang C, Song C (2015) An upp-based markerless gene replacement method for genome reduction and metabolic pathway engineering in Pseudomonas mendocina NK-01 and Pseudomonas putida KT2440. J Microbiol Methods 113:27–33CrossRefGoogle Scholar
  23. Wang L, Hoffmann J, Watzlawick H, Altenbuchner J (2016) Markerless gene deletion with cytosine deaminase in Thermus thermophilus strain HB27. Appl Environ Microbiol 82(4):1249–1255CrossRefGoogle Scholar
  24. Zha D, Xu L, Zhang H, Yan Y (2014a) Molecular identification of lipase LipA from Pseudomonas protegens Pf-5 and characterization of two whole-cell biocatalysts Pf-5 and Top10lipA. J Microbiol Biotechnol 24(5):619–628CrossRefGoogle Scholar
  25. Zha D, Zhang H, Zhang H, Xu L, Yan Y (2014b) N-terminal transmembrane domain of lipase LipA from Pseudomonas protegens Pf-5: a must for its efficient folding into an active conformation. Biochimie 105:165–171CrossRefGoogle Scholar
  26. Zha D, Xu L, Zhang H, Yan Y (2014c) The two-component GacS-GacA system activates lipA translation by RsmE but not RsmA in Pseudomonas protegens Pf-5. Appl Environ Microbiol 80(21):6627–6637CrossRefGoogle Scholar
  27. Zhang W, Gao W, Feng J, Zhang C, He Y, Cao M, Li Q, Sun Y, Yang C, Song C, Wang S (2014) A markerless gene replacement method for B. amyloliquefaciens LL3 and its use in genome reduction and improvement of poly-γ-glutamic acid production. Appl Microbiol Biotechnol 98(21):8963–8973CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.School of Pharmacy and Life SciencesJiujiang UniversityJiujiangPeople’s Republic of China
  2. 2.School of NursingJiujiang UniversityJiujiangPeople’s Republic of China

Personalised recommendations