Advertisement

Biotechnology Letters

, Volume 41, Issue 4–5, pp 495–502 | Cite as

Mupirocin: applications and production

  • Alexandra Tucaliuc
  • Alexandra Cristina BlagaEmail author
  • Anca Irina Galaction
  • Dan Cascaval
Review

Abstract

Mupirocin is an antibiotic from monocarboxylic acid class used as antibacterial agent against methicillin-resistant Staphylococcus aureus (MRSA) and can be obtained as a mixture of four pseudomonic acids by Pseudomonas fluorescens biosynthesis. Nowadays improving antibiotics occupies an important place in the pharmaceutical industry as more and more resistant microorganisms are developing. Mupirocin is used to control the MRSA outbreaks, for infections of soft tissue or skin and for nasal decolonization. Due to its wide use without prescription, the microorganism’s resistance to Mupirocin increased from up to 81%, thus becoming imperative its control or improvement. As the biotechnological production of Mupirocin has not been previously reviewed, in the present paper we summarize some consideration on the biochemical process for the production of pseudomonic acids (submerged fermentation and product recovery). Different strains of Pseudomonas, different culture medium and different conditions for the fermentation were analysed related to the antibiotics yield and the product recovery step is analysed in relation to the final purity. However, many challenges have to be overcome in order to obtain pseudomonic acid new versions with better properties related to antibacterial activity.

Keywords

Antibiotic resistance Biosynthesis Mupirocin Pseudomonic acid Separation 

Notes

Acknowledgements

This work was supported by a Grant of Ministry or Research and Innovation, CNCS—UEFISCDI, Project PN III PCE 6/2017, Code PN-III-P4-ID-PCE-2016-0100, within PNCDI III.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

References

  1. Antonov NK, Garzon MC, Morel KD, Whittier S, PlanetPJ Lauren CT (2015) High prevalence of mupirocin resistance in Staphylococcus aureus isolates from a pediatric population. Antimicrob Agents Chemother 59(6):3350–3356CrossRefGoogle Scholar
  2. Barrish JC, Lee HL, Mitt T, Pizzolato G, Baggiolini EG, Uskokovic MR (1988) Total synthesis of pseudomonic acid C. J Org Chem 53(18):4282–4295CrossRefGoogle Scholar
  3. Barta I, Tegdes A, Szell V, Szabo C, Arvai ENN, Keri W, Leonov D, Lang I, Igloy MBN, Jerkovich G, Salat J (2001) Process for the isolation of pseudomonic acid A from pseudomonic acid complex containing culture broth. Patent US 6,245,921 B1Google Scholar
  4. Bisschops MAT, Reijns TGP, Mathiesen A, Aassveen L (2009) Purification of mupirocin. Patent US 7,619,102 B2Google Scholar
  5. Bojarska J, Maniukiewicz W, Fruziński A, Jedrzejczyk M, Wojciechowski J, Krawczyk H (2014) Structural and spectroscopic characterization and Hirshfeld surface analysis of major component of antibiotic mupirocin—pseudomonic acid A. J Mol Struct 1076:126–135CrossRefGoogle Scholar
  6. Chaliotis A, Vlastaridis P, Mossialos D, Ibba M, Becker HD, Stathopoulos C, Amoutzias GD (2016) The complex evolutionary history of aminoacyl-tRNA synthetases. Nucleic Acids Res 45(3):1059–1069CrossRefGoogle Scholar
  7. Curzons AD (1987) Isolation of pseudomonic acid. United States Patent 4,639,534Google Scholar
  8. El-Sayed AK, Hothersall J, Cooper SM, Stephens E, Simpson TJ, Thomas CM (2003) Characterization of the mupirocin biosynthesis gene cluster from Pseudomonas fluorescens NCIMB 10586. Chem Biol 10:419–430CrossRefGoogle Scholar
  9. Fritz E, Fekete A, Lintelmann J, Schmitt-Kopplin P, Meckenstock RU (2009) Isolation of two Pseudomonas strains producing pseudomonic acid A. Syst Appl Microbiol 32:56–64CrossRefGoogle Scholar
  10. Gao SS, Hothersall J, Wu JE, Murphy AC, Song ZS, Stephens ER, Thomas CM, Crump MP, Cox RJ, Simpson TJ, Willis CL (2014) Biosynthesis of mupirocin by Pseudomonas fluorescens NCIMB 10586 involves parallel pathways. J Am Chem Soc 136:5501–5507CrossRefGoogle Scholar
  11. Gulyas E, Balogh G, Erdei J, Seress P (2008). pH controlled fermentation process for pseudomonic acid production. US Patent US 7439,045 B2Google Scholar
  12. Gurney R, Thomas CM (2011) Mupirocin: biosynthesis, special features and applications of an antibiotic from a Gram-negative bacterium. Appl Microbiol Biotechnol 90:11–21CrossRefGoogle Scholar
  13. Jackson RFW, Raphael RA, Stibbard JHA, Tidbury RC (1984) Formal total synthesis of (±)-pseudomonic acids from dihydropyran. J Chem Soc Perkin Trans 1:2159–2164CrossRefGoogle Scholar
  14. Jin Y, Li M, Shang Y, Liu L, Shen X, Lv Z, Hao Z, Duan J, Wu Y, Chen C, Pan J, Yu F (2018) Sub-inhibitory concentrations of mupirocin strongly inhibit alpha-toxin production in high-level mupirocin-resistant MRSA by down-regulating agr, saeRS, and sarA. Front Microbiol 9:993CrossRefGoogle Scholar
  15. Khoshnood S, Heidary M, Asadi A, Soleimani S, Motahar M, Savari M, Saki M, Abdi M (2019) A review on mechanism of action, resistance, synergism, and clinical implications of mupirocin against Staphylococcus aureus. Biomed Pharmacother 109:1809–1818CrossRefGoogle Scholar
  16. Kim JS, Kwon SH (2016) Mupirocin in the treatment of staphylococcal infections in chronic rhinosinusitis: a meta-analysis. PLoS ONE 11(12):e0167369CrossRefGoogle Scholar
  17. Kufrin G (2008) Finding the optimum composition of nutrient medium needed for the growth of Pseudomonas fluorescens and for the biosynthesis of mupirocin. Dissertation, University of ZagrebGoogle Scholar
  18. Leisinger T, Margraff R (1979) Secondary metabolites of the fluorescent pseudomonads. Microbiol Rev 4(3):422–442Google Scholar
  19. Lounsbury N, Eidem T, Colquhoun J, Mateo G, Abou-Gharbia M, Dunman PM, Childers WE (2018) Novel inhibitors of Staphylococcus aureus RnpA that synergize with mupirocin. Bioorg Med Chem Lett 28:1127–1131CrossRefGoogle Scholar
  20. Mantle PG, Langen M, Teo VK (2001) Differentiating the biosynthesis of pseudomonic acids A and B. J Antibiot 54(2):166–174CrossRefGoogle Scholar
  21. Martin F (1989) Biosynthetic studies on pseudomonic acid. PhD thesis, University of EdinburghGoogle Scholar
  22. Matthijs S, Wauven CV, Cornu B, Ye L, Cornelis P, Thomas CM, Ongena M (2014) Antimicrobial properties of Pseudomonas strains producing the antibiotic mupirocin. Res Microbiol 165:695–704CrossRefGoogle Scholar
  23. Mercer DK, Katvars LK, Hewitt F, Smith DW, Robertson J, O’Neil DA (2017) NP108, an antimicrobial polymer with activity against methicillin- and mupirocin-resistant Staphylococcus aureus. Antimicrob Agents Chemother 61(9):e00502–e00517CrossRefGoogle Scholar
  24. O’Hanlon PJ, Woodford MC, Rogers NH (1980) Isolation of organic acids. United States Patent 4,222,942Google Scholar
  25. Patel JB, Gorwitz RJ, Jernigan John A (2009) Mupirocin resistance. Clin Infect Dis 49(6):935–941CrossRefGoogle Scholar
  26. Patel J, Desai G, Upadhya A (2014) Separation of mupirocin by normal phase liquid chromatography (NPLC). Sep Sci Technol 49(18):2907–2912CrossRefGoogle Scholar
  27. Poovelikunnel T, Gethin G, Humphreys H (2015) Mupirocin resistance: clinical implications and potential alternatives for the eradication of MRSA. J Antimicrob Chemother 70(10):2681–2692CrossRefGoogle Scholar
  28. Poovelikunnel TT, Gethin G, Solanki D, McFadden E, Codd M, Humphreys H (2018) Randomized controlled trial of honey versus mupirocin to decolonize patients with nasal colonization of meticillin-resistant Staphylococcus aureus. J Hosp Infect 98:141–148CrossRefGoogle Scholar
  29. Raphael RA, Stibbard JHA, Tidbury R (1982) An approach to the synthesis of pseudomonic acids. Tetrahedron Lett 23(23):2407–2410CrossRefGoogle Scholar
  30. Rubenick JB, Rubim AM, Bellé F, Nogueira-Librelotto DR, Rolim CMB (2017) Preparation of mupirocin-loaded polymeric nanocapsules using essential oil of rosemary Brazilian. J Pharm Sci 53(1):e16101Google Scholar
  31. Sengupta S, Kim HJ, Cho KS, Song WY, Sim T (2017) Highly stereoselective synthesis of mupirocin H. Tetrahedron 73:1182–1189CrossRefGoogle Scholar
  32. Snider BB, Phillips GB (1982) Total synthesis of (+-)-pseudomonic acids A and C. J Am Chem Soc 104(4):1113–1114CrossRefGoogle Scholar
  33. Snider BB, Phillips GB, Cordova R (1983) Formal total synthesis of (. + -.)-pseudomonic acids A and C. The quasi-intramolecular Lewis acid catalyzed Diels–Alder reaction. J Org Chem 48(18):3003–3010CrossRefGoogle Scholar
  34. Sutherland R, Boon RJ, Griffin K, Masters PJ, Slocombe B, White AR (1985) Antibacterial activity of mupirocin (pseudomonic acid), a new antibiotic for topical use. Antimicrob Agents Chemother 27:495–498CrossRefGoogle Scholar
  35. Szell V, Lang I, Barta I, Tedges A, Albrecht K, Nee Suto JM, Szabo IM, Petroczki M, Erdei J, Gulyas E, Balogh G (2003) Process for the preparation of pseudomonic acid a antibiotic by microbiological method. US Patent US6506591B2Google Scholar
  36. Upton A, Lang S, Heffernan H (2003) Mupirocin and Staphylococcus aureus: a recent paradigm of emerging antibiotic resistance. J Antimicrob Chemother 51:613–617CrossRefGoogle Scholar
  37. Yankey H, Isaacson G (2018) Efficacy of topical 2% mupirocin ointment for treatment of tympanostomy tube otorrhea caused by community-acquired methicillin resistant Staphylococcus aureus. Int J Pediatr Otorhinolaryngol 109:36–39CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Faculty of Chemical Engineering and Environmental Protection “Cristofor Simionescu”“Gheorghe Asachi” Technical University of IasiIasiRomania
  2. 2.Faculty of Medical Bioengineering“Grigore T. Popa” University of Medicine and PharmacyIasiRomania

Personalised recommendations