Biotechnology Letters

, Volume 41, Issue 1, pp 107–114 | Cite as

Application of microbial fuel cell technology for vinasse treatment and bioelectricity generation

  • Cristiane Angélica OttoniEmail author
  • Marta F. Simões
  • Jonas G. Santos
  • Luciana Peixoto
  • Cleiton R. Martins
  • Bruno P. Silva
  • Almir O. Neto
  • António G. Brito
  • Alfredo E. Maiorano
Original Research Paper



Our study evaluated the performance of different two-chambered microbial fuel cell (MFC) prototypes, operated with variable distance between electrodes and Nafion membrane and specific inoculum concentration, applied for vinasse treatment.


The performance of the developed MFC resulted in a maximum current density of 1200 mA m−2 and power density of 800 mW m−2 in a period of 61 days. MFC performed a chemical oxygen demand removal at a rate ranging from 51 to 60%.


Taking our preliminary results into consideration, we concluded that the MFC technology presents itself as highly promising for the treatment of vinasse.


Microbial fuel cell Vinasse Chemical oxygen demand Bioelectricity 



Authors would like to acknowledge the technician and financial support of Programa Novos Talentos provided by the Instituto de Pesquisa Tecnológica do Estado de São Paulo (IPT) and Instituto de Estudos Avançados do Mar (IEAMar).


Instituto de Pesquisa Tecnológica do Estado de São Paulo/Programa Novos Talentos, through individual Research Grant attributed to Cristiane Angélica Ottoni.

Compliance with ethical standards

Conflict of interests

All authors declare that they have no competing interests.


  1. Alatraktchi FA, Zhang Y, Angelidaki I (2011) Nanomodification of the electrodes in microbial fuel cell: impact of nanoparticle density on electricity production and microbial community. Appl Energy 116:216–222CrossRefGoogle Scholar
  2. Association C, Washington D (1995) APHA: standard methods for the examination of water and wastewater. Am Phys Educ Rev 24:481–486Google Scholar
  3. Campos CR, Mesquita VA, Silva CF, Schwan RF (2014) Efficiency of physicochemical and biological treatments of vinasse and their influence on indigenous microbiota for disposal into the environment. Waste Manag 34:2036–2046CrossRefGoogle Scholar
  4. Cassman NA, Lourenço KS, do Carmo JB, Cantarella H, Kuramae EE (2018) Genome-resolved metagenomics of sugarcane vinasse bactéria. Biotechnol Biofuels 11:48CrossRefGoogle Scholar
  5. Chakraborty C, Doss CG, Patra BC, Bandyopadhyay S (2014) DNA barcoding to map the microbial communities: current advances and future directions. Appl Microbiol Biotechnol 98:3425–3436CrossRefGoogle Scholar
  6. Christofoletti CA, Escher JP, Correia JE, Marinho JFU, Fontanetti CS (2013) Sugarcane vinasse: environmental implications of its use. Waste Manag 33:2752–2761CrossRefGoogle Scholar
  7. Engin IK, Cekmecelioglu D, Yücel AM, Oktem HA (2018) Evaluation of heterotrophic and mixotrophic cultivation of novel Micractinium sp. ME05 on vinasse and its scale up for biodiesel production. Bioresour Technol 251:128–134CrossRefGoogle Scholar
  8. Franks AE, Nevin KP (2010) Microbial fuel cells, a current review. Energies 3:899–919CrossRefGoogle Scholar
  9. Gacitúa MA, Muñoz E, González B (2018) Bioelectrochemical sulphate reduction on batch reactors: effect of inoculum-type and applied potential on sulphate consumption and pH. Bioelectrochemistry 119:26–32CrossRefGoogle Scholar
  10. Harde SM, Bankar SB, Ojamo H, Granström T, Singhal RS, Survase AS (2014) Continuous lignocellulosic ethanol production using Coleus forskohlii root hydrolysate. Fuel 126:77–84CrossRefGoogle Scholar
  11. Hassan SHA, El-Rab SMF, Rahimnejad M, Ghasemi M, Joo J-H, Sik-Ok Y, Kim IS, Oh S-E (2014) Electricity generation from rice straw using a microbial fuel cell. Int J Hydrog Energy 39:9490–9496CrossRefGoogle Scholar
  12. Heidrich ES, Dolfing J, Wade MJ, Sloan WT, Quince C, Curtis TP (2018) Temperature, inocula and substrate: contrasting electroactive consortia, diversity and performance in microbial fuel cells. Bioelectrochemistry 119:43–50CrossRefGoogle Scholar
  13. Hidalgo D, Tommasi T, Cauda V, Porro S, Chiodoni A, Bejtka K, Ruggeri B (2014) Streamlining of commercial Berl saddles: a new material to improve the performance of microbial fuel cells. Energy 71:615–623CrossRefGoogle Scholar
  14. Higa M, Calderani DA, Lopes KS (2014) Electric power generation from anaerobic digestion of the sugar cane vinasse—case study. Rev Eng Tecnol 6:83–91Google Scholar
  15. Higgins SR, Lau C, Atanassov P, Minteer SD, Cooney MJ (2011) Hybrid biofuel cell: microbial fuel cell with an enzymatic air-breathing cathode. ACS Catal 1:994–997CrossRefGoogle Scholar
  16. Hou B, Hu Y, Sun J (2012) Performance and microbial diversity of microbial fuel cells coupled with different cathode types during simultaneous azo dye decolorization and electricity generation. Bioresour Technol 111:105–110CrossRefGoogle Scholar
  17. Huang L, Regan JM, Quan X (2011) Electron transfer mechanisms, new applications, and performance of biocathode microbial fuel cells. Bioresour Technol 102:316–323CrossRefGoogle Scholar
  18. Jadhav DA, Ghadge NA, Ghangrekar MM (2014) Simultaneous organic matter removal and disinfection of wastewater with enhanced power generation in microbial fuel cell. Bioresour Technol 163:328–334CrossRefGoogle Scholar
  19. Lima AM, Souza RR (2013) Use of sugar cane vinasse as substrate for biosurfactant production using Bacillus subtilis PC. Chem Eng Trans 37:673–678Google Scholar
  20. Martínez SH, Eijck J, Cunha MP, Guilhoto JJM, Walter A, Faaij A (2013) Analysis of socio-economic impacts of sustainable sugarcane-ethanol production by means of inter-regional Input–Output analysis: demonstrated for Northeast Brazil. Renew Sustain Energy Rev 28:290–316CrossRefGoogle Scholar
  21. Mehdinia A, Ziaei E, Jabbari A (2014) Multi-walled carbon nanotube/SnO2 nanocomposite: a novel anode material for microbial fuel cells. Electrochim Acta 130:512–518CrossRefGoogle Scholar
  22. Mohan SV, Velvizhi G, Modestra A, Srikanth S (2014) Microbial fuel cell: critical factors regulating bio-catalyzed electrochemical process and recent advancements. Renew Sustain Energy Rev 40:779–797CrossRefGoogle Scholar
  23. Moraes BS, Junqueira TL, Pavanello LG, Cavalett O, Mantelatto PE, Bonomi A, Zaiat M (2014) Anaerobic digestion of vinasse from sugarcane biorefineries in Brazil from energy, environmental, and economic perspectives: profit or expense? Appl Energy 113:825–835CrossRefGoogle Scholar
  24. Oliveira JG, Garcia-Cruz CH (2013) Properties of a biosurfactant produced by Bacillus pumilus using vinasse and waste frying oil as alternative carbon sources. Braz Arch Biol Technol 56:155–160CrossRefGoogle Scholar
  25. Oliveira BG, Carvalho JLN, Cerri CEP, Cerri CC, Feigl BJ (2013) Soil greenhouse gas fluxes from vinasse application in Brazilian sugarcane áreas. Geoderma 200–201:77–84CrossRefGoogle Scholar
  26. Ozkaya B, Akoglu B, Karadag D, Aci G, Taskan E, Hasar H (2012) Bioelectricity production using a new electrode in a microbial fuel cell. Bioprocess Biosyst Eng 35:1219–1227CrossRefGoogle Scholar
  27. Pant D, Bogaert GV, Diels L, Vanbroekhoven K (2010) A review of the substrates used in microbial fuel cells (MFCs) for sustainable energy production. Bioresour Technol 101:1533–1543CrossRefGoogle Scholar
  28. Peixoto L, Rodrigues AL, Martins G, Nicolau A, Brito AG, Silva MM, Parpot PR (2013) A flat microbial fuel cell for decentralized wastewater valorization: process performance and optimization potential. Environ Technol 34:1947–1956CrossRefGoogle Scholar
  29. Potentini MF, Rodríguez-Malavera J (2006) Vinasse biodegradation by Phanerochaete chrysosporium. J Environ Biol 27:661–665Google Scholar
  30. Sá LRV, Cammarota MC, Ferreira-Leitão VS (2014) Produção de hidrogênio via fermentação anaeróbia - Aspectos gerais e possibilidade de utilização de resíduos agroindustriais brasileiros. Quim Nova 37:857–867Google Scholar
  31. Santoro C, Guilizzoni M, Correa Baena JP, Pasaogullari U, Casalegno A, Li B, Babanova S, Artyushkova K, Atanassov P (2014) The effects of carbon electrode surface properties on bacteria attachment and start up time of microbial fuel cells. Carbon 67:128–139CrossRefGoogle Scholar
  32. Santos SC, Rosa PRF, Sakamoto IK, Varesche MBA, Silva EL (2014) Hydrogen production from diluted and raw sugarcane vinasse under thermophilic anaerobic conditions. Int J Hydrog Energy 39:9599–9610CrossRefGoogle Scholar
  33. Sharaf OZ, Orhan MF (2014) An overview of fuel cell technology: fundamentals and applications. Renew Sustain Energy Rev 32:810–853CrossRefGoogle Scholar
  34. Sydney EB, Larroche C, Novak AC, Nouaille R, Sarma SJ, Brar SK, Letti LAJ, Soccol VT, Soccol CR (2014) Economic process to produce biohydrogen and volatile fatty acids by a mixed culture using vinasse from sugarcane ethanol industry as nutrient source. Bioresour Technol 159:80–386CrossRefGoogle Scholar
  35. Ullery ML, Logan BE (2015) Anode acclimation methods and their impact on microbial electrolysis cells treating fermentation effluent. Int J Hydrog Energy 40:6782–6791CrossRefGoogle Scholar
  36. Wei J, Liang P, Huang X (2011) Recent progress in electrodes for microbial fuel cells. Bioresour Technol 102:9335–9344CrossRefGoogle Scholar
  37. Yang F, Hanna MA, Sun R (2012) Value-added uses for crude glycerol—a byproduct of biodiesel production. Biotechnol Biofuels 5:1–13CrossRefGoogle Scholar
  38. Zhang Y, Min B, Huang L, Angelidaki I (2011) Electricity generation and microbial community response to substrate changes in microbial fuel cell. Bioresour Technol 102:1166–1173CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  • Cristiane Angélica Ottoni
    • 1
    • 3
    Email author return OK on get
  • Marta F. Simões
    • 2
  • Jonas G. Santos
    • 3
  • Luciana Peixoto
    • 4
  • Cleiton R. Martins
    • 1
  • Bruno P. Silva
    • 1
  • Almir O. Neto
    • 5
  • António G. Brito
    • 6
  • Alfredo E. Maiorano
    • 3
  1. 1.São Paulo State University (UNESP), Bioscience InstituteSão VicenteBrazil
  2. 2.Biology DepartmentEdge Hill UniversityLancashireUK
  3. 3.Laboratório de Biotecnologia IndustrialInstituto de Pesquisas Tecnológicas do Estado de São PauloSão PauloBrazil
  4. 4.Centre of Biological EngineeringUniversity of MinhoBragaPortugal
  5. 5.Centro de Célula a Combustível e HidrogênioInstituto de Pesquisas Energéticas e NuclearesSão PauloBrazil
  6. 6.Department of Biosystems Sciences and Engineering, Institute of AgronomyUniversity of LisbonLisbonPortugal

Personalised recommendations