Biotechnology Letters

, Volume 40, Issue 11–12, pp 1467–1475 | Cite as

BABY BOOM (BBM): a candidate transcription factor gene in plant biotechnology

  • Priyanka Jha
  • Vijay KumarEmail author


Plants have evolved a number of transcription factors, many of which are implicated in signaling pathways as well as regulating diverse cellular functions. BABY BOOM (BBM), transcription factors of the AP2/ERF family are key regulators of plant cell totipotency. Ectopic expression of the BBM gene, originally identified in Brassica napus, has diverse functions in plant cell proliferation, growth and development without exogenous growth regulators. The BBM gene has been implicated to play an important role as a gene marker in multiple signaling developmental pathways in plant development. This review focuses on recent advances in our understanding of a member of the AP2 family of transcription factor BBM in plant biotechnology including plant embryogenesis, cell proliferation, regeneration, plant transformation and apogamy. Recent discoveries about the BBM gene will inevitably help to unlock the long-standing mysteries of different biological mechanisms of plant cells.


BABY BOOM (BBMCell proliferation Embryogenesis Transformation 



Abscisic acid insensitive 3


APETALA2 DNA-binding domain in plant proteins






Creates recombination




Ethylene-responsive element binding factor




Glucocorticoid receptor






Open reading frame




Polycomb repressive complex


Rapid amplification of cDNA ends


Real-time-polymerase chain reaction


Somatic embryogenesis


Tryptophan aminotransferase of Arabidopsis 1





We apologize to all those colleagues whose outstanding contributions we could not cite in this review. We thank Dr. Wendy Stirk (University of KwaZulu-Natal, South Africa) for thorough language correction and reading the manuscript. We also thank the anonymous reviewers for their suggestions, which helped to improve the manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Altpeter F, Springer NM, Bartley LE, Blechl AE, Brutnell TP, Citovsky V, Conrad LJ, Gelvin SB, Jackson DP, Kausch AP, Lemaux PG, Medford JI, Orozco-Cárdenas ML, Tricoli DM, Van Eck J, Voytas DF, Walbot V, Wang K, Zhang ZJ, Stewart CN Jr (2016) Advancing crop transformation in the era of genome editing. Plant Cell 28:1510–1520PubMedPubMedCentralGoogle Scholar
  2. Bandupriya HDD, Gibbings JG, Dunwell JM (2014) Overexpression of coconut AINTEGUMENTA-like gene, CnANT, promotes in vitro regeneration in transgenic Arabidopsis. Plant Cell Tiss Org Cult 116:67–79CrossRefGoogle Scholar
  3. Boutilier K, Offringa R, Sharma VK, Kieft H, Ouellet T, Zhang L, Hattori J, Liu C, van Lammeren AAM, Miki BLA, Custers JBM, van Lookeren Campagne MM (2002) Ectopic expression of BABY BOOM triggers a conversion from vegetative to embryonic growth. Plant Cell 14:1737–1749CrossRefGoogle Scholar
  4. Braybrook SA, Stone SL, Park S, Bui AQ, Le BH, Fischer RL, Goldberg RB, Harada JJ (2006) Genes directly regulated by LEAFY COTYLEDON2 provide insight into the control of embryo maturation and somatic embryogenesis. Proc Natl Acad Sci USA 103:3468–3473CrossRefGoogle Scholar
  5. Bui LT, Pandzic D, Youngstrom CE, Wallace S, Irish EE, Szovenyi P, Cheng CL (2017) A fern AINTEGUMENTA gene mirrors BABY BOOM in promoting apogamy in Ceratopteris richardii. Plant J 90:122–132CrossRefGoogle Scholar
  6. Chugh A, Khurana P (2002) Gene expression during somatic embryogenesis—recent advances. Curr Sci 86:715–730Google Scholar
  7. Conner JA, Mookkan M, Huo H, Chae K, Ozias-Akins P (2015) A parthenogenesis gene of apomict origin elicits embryo formation from unfertilized eggs in a sexual plant. Proc Natl Acad Sci USA 112:11205–11210CrossRefGoogle Scholar
  8. Deng W, Luo KM, Li ZG, Yang YW (2009) A novel method for induction of plant regeneration via somatic embryogenesis. Plant Sci 177:43–48CrossRefGoogle Scholar
  9. Feng JX, Liu D, Pan Y, Gong W, Ma LG, Luo JC, Deng XW, Zhu YX (2005) An annotation update via cDNA sequence analysis and comprehensive profiling of developmental, hormonal or environmental responsiveness of the Arabidopsis AP2/EREBP transcription factor gene family. Plant Mol Biol 59:853–868CrossRefGoogle Scholar
  10. Florez SL, Erwin RL, Maximova SN, Guiltinan MJ, Curtis WR (2015) Enhanced somatic embryogenesis in Theobroma cacao using the homologous BABY BOOM transcription factor. BMC Plant Biol 15:121CrossRefGoogle Scholar
  11. Floyd SK, Bowman JL (2007) The ancestral developmental tool kit of land plants. Int J Plant Sci 168:1–35CrossRefGoogle Scholar
  12. Heidmann I, de Lange B, Lambalk J, Angenent GC, Boutilier K (2011) Efficient sweet pepper transformation mediated by the BABY BOOM transcription factor. Plant Cell Rep 30:1107–1115CrossRefGoogle Scholar
  13. Horstman A, Li M, Heidmann I, Weemen M, Chen B, Muino JM, Angenent GC, Boutilier K (2017a) The BABY BOOM transcription factor activates the LEC1-ABI3-FUS3-LEC2 network to induce somatic embryogenesis. Plant Physiol 175:848–857PubMedPubMedCentralGoogle Scholar
  14. Horstman A, Bemer M, Boutilier K (2017b) A transcriptional view on somatic embryogenesis. Regeneration 4:201–216CrossRefGoogle Scholar
  15. Hu H, Xiong L, Yang Y (2005) Rice SERK1 gene positively regulates somatic embryogenesis of cultured cells and host defense response against fungal infection. Planta 222:107–117CrossRefGoogle Scholar
  16. Irikova T, Grozeva S, Denev I (2012) Identification of BABY BOOM and LEAFY COTYLEDON genes in sweet pepper (Capsicum annuum L.) genome by their partial gene sequences. Plant Growth Regul 67:191CrossRefGoogle Scholar
  17. Kulinska-Lukaszek K, Tobojka M, Adamiok A, Kurczynska EU (2012) Expression of the BBM gene during somatic embryogenesis of Arabidopsis thaliana. Biol Plant 56:389–394CrossRefGoogle Scholar
  18. Kumar V, Van Staden J (2017) New insights into plant somatic embryogenesis: an epigenetic view. Acta Physiol Plant 39:194CrossRefGoogle Scholar
  19. Lowe K, Wu E, Wang N, Hoerster G, Hastings C, Cho MJ, Scelonge C, Lenderts B, Chamberlin M, Cushatt J, Wang L, Ryan L, Khan T, Chow-Yiu J, Hua W, Yu M, Banh J, Bao Z, Brink K, Igo E, Rudrappa B, Shamseer PM, Bruce W, Newman L, Shen B, Zheng P, Bidney D, Falco C, Register J, Zhao ZY, Xu D, Jones T, Gordon-Kamm W (2016) Morphogenic regulators Baby boom and Wuschel improve monocot transformation. Plant Cell 28:1998–2015CrossRefGoogle Scholar
  20. Lutz KA, Azhagiri A, Maliga P (2011) Transplastomics in Arabidopsis: progress towards developing an efficient method. Humana Press, New YorkGoogle Scholar
  21. Lutz KA, Martin C, Khairzada S, Maliga P (2015) Steroid-inducible BABY BOOM system for development of fertile Arabidopsis thaliana plants after prolonged tissue culture. Plant Cell Rep 34:1849–1856CrossRefGoogle Scholar
  22. Mookan M, Nelson-Vasilchik K, Hague J, Zhang ZJ, Kausch AP (2017) Selectable marker independent transformation of recalcitrant maize inbred B73 and sorghum P898012 mediated by morphogenic regulators BABY BOOM and WUSCHEL2. Plant Cell Rep 36:1477–1491CrossRefGoogle Scholar
  23. Morcillo F, Gallard A, Pillot M, Jouannic S, Aberlenc-Bertossi F, Collin M, Verdeil JL, Tregear JW (2007) EgAP2-1, an AINTEGUMENTA-like (AIL) gene expressed in meristematic and proliferating tissues of embryos in oil palm. Planta 226:1353–1362CrossRefGoogle Scholar
  24. Nogler GA (1984) The Evolution of Asexual Reproduction in Plants. In: Johri BM (ed) Embryology of angiosperms. Springer, Berlin, pp 475–518CrossRefGoogle Scholar
  25. Nole-Wilson S, Tranby TL, Krizek BA (2005) AINTEGUMENTA-like (AIL) genes are expressed in young tissues and may specify meristematic or division-competent states. Plant Mol Biol 57:613–628CrossRefGoogle Scholar
  26. Ouakfaoui SE, Schnell J, Abdeen A, Colville A, Labbe H, Han S, Baum B, Laberge S, Miki B (2010) Control of somatic embryogenesis and embryo development by AP2 transcription factors. Plant Mol Biol 74:313–326CrossRefGoogle Scholar
  27. Passarinho P, Ketelaar T, Xing M, van Arkel J, Maliepaard C, Hendriks MW, Joosen R, Lammers M, Herdies L, den Boer B, van der Geest L, Boutilier K (2008) BABY BOOM target genes provide diverse entry points into cell proliferation and cell growth pathways. Plant Mol Biol 68:225–237CrossRefGoogle Scholar
  28. Riechmann JL, Meyerowitz EM (1998) The AP2/EREBP family of plant transcription factors. Biol Chem 379:633–646PubMedGoogle Scholar
  29. Rojas-Herrera R, Quiroz-Figueroa FR, Monforte-González M, Sánchez-Teyer F, Loyola-Vargas VM (2002) Differential gene expression during somatic embryogenesis in Coffea arabica L., revealed by RT-PCR differential display. Mol Biotechnol 21:43–50CrossRefGoogle Scholar
  30. Rupps A, Raschke J, Rümmler M, Linke B, Zoglauer K (2016) Identification of putative homologs of Larix decidua to BABYBOOM (BBM), LEAFY COTYLEDON1 (LEC1), WUSCHEL-relatedHOMEOBOX2 (WOX2) and SOMATIC EMBRYOGENESIS RECEPTOR-like KINASE (SERK) during somatic embryogenesis. Planta 243:473–488CrossRefGoogle Scholar
  31. Salvo SAGD, Hirsch CN, Buell CR, Kaeppler SM, Kaeppler HF (2014) Whole transcriptome profiling of maize during early somatic embryogenesis reveals altered expression of stress factors and embryogenesis-related genes. PLoS ONE 29:e111407CrossRefGoogle Scholar
  32. Schrader S, Kaldenhoff R, Richter G (1997) Expression of novel genes during somatic embryogenesis of suspension-cultured carrot cells (Daucus carota). J Plant Physiol 50:63–68CrossRefGoogle Scholar
  33. Shivani Awasthi P, Sharma V, Kaur N, Kaur N, Pandey P, Tiwari S (2017) Genome-wide analysis of transcription factors during somatic embryogenesis in banana (Musa spp.) cv. Grand Naine. PLoS ONE 12:e0182242CrossRefGoogle Scholar
  34. Silva AT, Barduche D, do Livramento KG, Paiva LV (2015) A putative BABY BOOM-like gene (CaBBM) is expressed in embryogenic calli and embryogenic cell suspension culture of Coffea arabica L. In Vitro Cell Dev Biol-Plant 51:93–101CrossRefGoogle Scholar
  35. Srinivasan C, Liu Z, Heidmann I, Supena ED, Fukuoka H, Joosen R, Lambalk J, Angenent G, Scorza R, Custers JB, Boutilier K (2007) Heterologous expression of the BABY BOOM AP2/ERF transcription factor enhances the regeneration capacity of tobacco (Nicotiana tabacum L.). Planta 225:341–351CrossRefGoogle Scholar
  36. Svitashev S, Schwartz C, Lenderts B, Young JK, Mark Cigan A (2016) Genome editing in maize directed by CRISPR-Cas9 ribonucleoprotein complexes. Nat commun 16:13274CrossRefGoogle Scholar
  37. Tucker MR, Araujo AG, Paech NA, Hecht V, Schmidt EDL, Rossell JB, de Vries SC, Koltunow AMG (2003) Sexual and apomictic reproduction in Hieracium subgenus Pilosella are closely interrelated developmental pathways. Plant Cell 15:1524–1537CrossRefGoogle Scholar
  38. Yang HF, Kou YP, Gao B, Soliman TMA, Xu KD, Ma N, Cao X, Zhao LJ (2014) Identification and functional analysis of BABY BOOM genes from Rosa canina. Biol Plant 58:427–435CrossRefGoogle Scholar
  39. Zhai L, Xu L, Wang Y, Zhu X, Feng H, Li C, Luo X, Everlyne MM, Liu L (2016) Transcriptional identification and characterization of differentially expressed genes associated with embryogenesis in radish (Raphanus sativus L.). Sci Rep 6:21652CrossRefGoogle Scholar
  40. Zheng Y, Ren N, Wang H, Stromberg AJ, Perry SE (2009) Global identification of targets of the Arabidopsis MADS domain protein AGAMOUS-Like15. Plant Cell 21:2563–2577CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Amity Institute of Biotechnology (AIB)Amity UniversityKolkataIndia
  2. 2.School of Life Sciences, Research Centre for Plant Growth and DevelopmentUniversity of KwaZulu-NatalScottsvilleSouth Africa

Personalised recommendations