Advertisement

Biotechnology Letters

, Volume 41, Issue 2, pp 221–230 | Cite as

Progress in antibiotic susceptibility tests: a comparative review with special emphasis on microfluidic methods

  • Zeeshan A. Khan
  • Mohd F. Siddiqui
  • Seungkyung ParkEmail author
Review

Abstract

Antibiotic susceptibility test (AST) is an umbrella term for techniques to determine the susceptibility of bacteria to antibiotics. The antibiotic-resistant bacteria are a major threat to public health and a directed therapy based on accurate AST results is paramount in resistance control. Here we have briefly covered the progress of conventional, molecular, and automated AST tools and their limitations. Various aspects of microfluidic AST such as optical, electrochemical, colorimetric, and mechanical methods have been critically reviewed. We also address the future requirements of the microfluidic devices for AST. Cumulatively, we have outlined the overview of AST that can help to expand and improve the existing techniques and emphasize that microfluidics could be the future of AST and introduction of microtechnologies in AST will be extremely advantageous, especially for point-of-care testing.

Keywords

Antibiotic susceptibility test Resistant bacteria Microfluidic methods Infectious disease Automated system 

Notes

Authors’ contributions

ZK, MS, and SP wrote and edited the manuscript. All the authors read and approved the final manuscript.

Funding

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (NRF-2015R1C1A1A01054762).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Angulo FJ, Collignon P, Wegener HC, Braam P, Butler CD (2005) The routine use of antibiotics to promote animal growth does little to benefit protein undernutrition in the developing world. Clin Infect Dis 41(7):1007–1013CrossRefGoogle Scholar
  2. Ayukekbong JA, Ntemgwa M, Atabe AN (2017) The threat of antimicrobial resistance in developing countries: causes and control strategies. Antimicrob Resist Infect Control 6(1):47CrossRefGoogle Scholar
  3. Balouiri M, Sadiki M, Ibnsouda SK (2016) Methods for in vitro evaluating antimicrobial activity: a review. J Pharm Anal 6(2):71–79CrossRefGoogle Scholar
  4. Blair JMA, Webber MA, Baylay AJ, Ogbolu DO, Piddock LJV (2015) Molecular mechanisms of antibiotic resistance. Nat Rev Microbiol 13(1):42–51CrossRefGoogle Scholar
  5. Boedicker JQ, Li L, Kline TR, Ismagilov RF (2008) Detecting bacteria and determining their susceptibility to antibiotics by stochastic confinement in nanoliter droplets using plug-based microfluidics. Lab Chip 8(8):1265–1272CrossRefGoogle Scholar
  6. Chen CH, Lu Y, Sin MLY, Mach KE, Zhang DD, Gau V, Liao JC, Wong PK (2010) Rapid antimicrobial susceptibility testing using high surface-to-volume ratio microchannels. Anal Chem 82(3):1012CrossRefGoogle Scholar
  7. Choi J, Yoo J, Lee M, Kim E-G, Lee JS, Lee S, Joo S, Song SH, Kim E-C, Lee JC (2014) A rapid antimicrobial susceptibility test based on single-cell morphological analysis. Sci Transl Med 6(267):267CrossRefGoogle Scholar
  8. Cira NJ, Ho JY, Dueck ME, Weibel DB (2012) A self-loading microfluidic device for determining the minimum inhibitory concentration of antibiotics. Lab Chip 12(6):1052–1059CrossRefGoogle Scholar
  9. Dua V, Kunin CM, White LV (1994) The use of antimicrobial drugs in Nagpur, India. A window on medical care in a developing country. Soc Sci Med 38(5):717–724CrossRefGoogle Scholar
  10. Felmingham D, Brown DF (2001) Instrumentation in antimicrobial susceptibility testing. J Antimicrob Chemother 48(suppl 1):81–85CrossRefGoogle Scholar
  11. Firpo G, Angeli E, Repetto L, Valbusa U (2015) Permeability thickness dependence of polydimethylsiloxane (PDMS) membranes. J Membr Sci 481:1–8CrossRefGoogle Scholar
  12. Golchin SA, Stratford J, Curry RJ, McFadden J (2012) A microfluidic system for long-term time-lapse microscopy studies of mycobacteria. Tuberculosis 92(6):489–496CrossRefGoogle Scholar
  13. Halford C, Gonzalez R, Campuzano S, Hu B, Babbitt JT, Liu J, Wang J, Churchill BM, Haake DA (2013) Rapid antimicrobial susceptibility testing by sensitive detection of precursor rRNA using a novel electrochemical biosensing platform. Antimicrob Agents Chemother 57(2):936–943CrossRefGoogle Scholar
  14. Hou Z, An Y, Hjort K, Hjort K, Sandegren L, Wu Z (2014a) Time lapse investigation of antibiotic susceptibility using a microfluidic linear gradient 3D culture device. Lab Chip 14(17):3409–3418CrossRefGoogle Scholar
  15. Hou Z, An Y, Hjort K, Hjort K, Sandegren L, Wu Z (2014b) Time lapse investigation of antibiotic susceptibility using a microfluidic linear gradient 3D culture device. Lab Chip 14(17):3409–3418CrossRefGoogle Scholar
  16. Jenkins SG, Schuetz AN (2012) Current concepts in laboratory testing to guide antimicrobial therapy. In: Mayo Clinic proceedings. Elsevier, pp 290–308Google Scholar
  17. Kalashnikov M, Lee JC, Campbell J, Sharon A, Sauer-Budge AF (2012) A microfluidic platform for rapid, stress-induced antibiotic susceptibility testing of Staphylococcus aureus. Lab Chip 12(21):4523–4532CrossRefGoogle Scholar
  18. Kalashnikov M, Campbell J, Lee JC, Sharon A, Sauer-Budge AF (2014) Stress-induced antibiotic susceptibility testing on a chip. J Vis Exp 83:50282Google Scholar
  19. Karlowsky JA, Richter SS (2015) Antimicrobial susceptibility testing systems*, manual of clinical microbiology, 11th edn. American Society of Microbiology, Washington, DCGoogle Scholar
  20. Kinnunen P, Sinn I, McNaughton BH, Newton DW, Burns MA, Kopelman R (2011) Monitoring the growth and drug susceptibility of individual bacteria using asynchronous magnetic bead rotation sensors. Biosens Bioelectron 26(5):2751–2755CrossRefGoogle Scholar
  21. Kinnunen P, McNaughton BH, Albertson T, Sinn I, Mofakham S, Elbez R, Newton DW, Hunt A, Kopelman R (2012) Self-assembled magnetic bead biosensor for measuring bacterial growth and antimicrobial susceptibility testing. Small 8(16):2477–2482CrossRefGoogle Scholar
  22. Lansang MA, Lucas-Aquino R, Tupasi TE, Mina VS, Salazar LS, Juban N, Limjoco TT, Nisperos LE, Kunin CM (1990) Purchase of antibiotics without prescription in manila, the philippines. Inappropriate choices and doses. J clin epidemiol 43(1):61–67CrossRefGoogle Scholar
  23. Lee W-B, Fu C-Y, Chang W-H, You H-L, Wang C-H, Lee MS, Lee G-B (2017) A microfluidic device for antimicrobial susceptibility testing based on a broth dilution method. Biosens Bioelectron 87:669–678CrossRefGoogle Scholar
  24. Lehtinen J, Nuutila J, Lilius EM (2004) Green fluorescent protein–propidium iodide (GFP-PI) based assay for flow cytometric measurement of bacterial viability. Cytometry part A 60(2):165–172CrossRefGoogle Scholar
  25. Li Y, Burke DT, Kopelman R, Burns MA (2014) Asynchronous magnetic bead rotation (AMBR) microviscometer for label-free DNA analysis. Biosensors 4(1):76–89CrossRefGoogle Scholar
  26. Liu C, Zeng G-M, Tang L, Zhang Y, Li Y-P, Liu Y-Y, Li Z, Wu M-S, Luo J (2011) Electrochemical detection of Pseudomonas aeruginosa 16S rRNA using a biosensor based on immobilized stem–loop structured probe. Enzyme Microb Technol 49(3):266–271CrossRefGoogle Scholar
  27. Lu Y, Wong PK (2011) Single cell antimicrobial susceptibility testing using confined microchannels and electrokinetic loading. In: 15th International conference on miniaturized systems for chemistry and life sciences 2011, MicroTAS 2011Google Scholar
  28. Lu Y, Gao J, Zhang DD, Gau V, Liao JC, Wong PK (2013) Single cell antimicrobial susceptibility testing by confined microchannels and electrokinetic loading. Anal Chem 85(8):3971–3976CrossRefGoogle Scholar
  29. Matsumoto Y, Sakakihara S, Grushnikov A, Kikuchi K, Noji H, Yamaguchi A, Iino R, Yagi Y, Nishino K (2016) A microfluidic channel method for rapid drug-susceptibility testing of Pseudomonas aeruginosa. PLoS ONE 11(2):e0148797CrossRefGoogle Scholar
  30. Mohan R, Mukherjee A, Sevgen SE, Sanpitakseree C, Lee J, Schroeder CM, Kenis PJA (2013a) A multiplexed microfluidic platform for rapid antibiotic susceptibility testing. Biosens Bioelectron 49:118–125CrossRefGoogle Scholar
  31. Mohan R, Mukherjee A, Sevgen SE, Sanpitakseree C, Lee J, Schroeder CM, Kenis PJA (2013b) A multiplexed microfluidic platform for rapid antibiotic susceptibility testing. Biosens Bioelectron 49:118–125CrossRefGoogle Scholar
  32. Mohan R, Sanpitakseree C, Desai AV, Sevgen SE, Schroeder CM, Kenis PJA (2015) A microfluidic approach to study the effect of bacterial interactions on antimicrobial susceptibility in polymicrobial cultures. RSC Advances 5(44):35211–35223CrossRefGoogle Scholar
  33. Nordmann P, Dortet L, Poirel L (2012) Rapid detection of extended-spectrum-β-lactamase-producing enterobacteriaceae. J Clin Microbiol 50(9):3016–3022CrossRefGoogle Scholar
  34. Obara B, Roberts MAJ, Armitage JP, Grau V (2013) Bacterial cell identification in differential interference contrast microscopy images. BMC Bioinform 14(1):134CrossRefGoogle Scholar
  35. Park S, Zhang Y, Lin S, Wang TH, Yang S (2011) Advances in microfluidic PCR for point-of-care infectious disease diagnostics. Biotechnol Adv 29(6):830–839CrossRefGoogle Scholar
  36. Peitz I, van Leeuwen R (2010) Single-cell bacteria growth monitoring by automated DEP-facilitated image analysis. Lab Chip 10(21):2944–2951CrossRefGoogle Scholar
  37. Petersen A, Andersen JS, Kaewmak T, Somsiri T, Dalsgaard A (2002) Impact of integrated fish farming on antimicrobial resistance in a pond environment. Appl Environ Microbiol 68(12):6036–6042CrossRefGoogle Scholar
  38. Pulido MR, García-Quintanilla M, Martín-Peña R, Cisneros JM, McConnell MJ (2013) Progress on the development of rapid methods for antimicrobial susceptibility testing. J Antimicrob Chemother 68(12):2710–2717CrossRefGoogle Scholar
  39. Rackus DG, Shamsi MH, Wheeler AR (2015) Electrochemistry, biosensors and microfluidics: a convergence of fields. Chem Soc Rev 44(15):5320–5340CrossRefGoogle Scholar
  40. Ramezan Ali A, Ali Mehrabi T, Mohammad Javad HS, Khadijeh M, Mahdi Ghorbananli Z (2012) A method for antibiotic susceptibility testing: applicable and accurate. Jundishapur J Microbiol 2012:341–345Google Scholar
  41. Rodloff A, Bauer T, Ewig S, Kujath P, Müller E (2008) Susceptible, intermediate, and resistant—the intensity of antibiotic action. Deutsches Ärzteblatt Int 105(39):657–662Google Scholar
  42. Saleh N, Awada S, Awwad R, Jibai S, Arfoul C, Zaiter L, Dib W, Salameh P (2015) Evaluation of antibiotic prescription in the Lebanese community: a pilot study. Infect Ecol Epidemiol. 5:27094.  https://doi.org/10.3402/iee.v5.27094 CrossRefGoogle Scholar
  43. Sinn I, Kinnunen P, Albertson T, McNaughton BH, Newton DW, Burns MA, Kopelman R (2011) Asynchronous magnetic bead rotation (AMBR) biosensor in microfluidic droplets for rapid bacterial growth and susceptibility measurements. Lab Chip 11(15):2604–2611CrossRefGoogle Scholar
  44. Sinn I, Albertson T, Kinnunen P, Breslauer DN, McNaughton BH, Burns MA, Kopelman R (2012) Asynchronous magnetic bead rotation microviscometer for rapid, sensitive, and label-free studies of bacterial growth and drug sensitivity. Anal Chem 84(12):5250–5256CrossRefGoogle Scholar
  45. Skafte-Pedersen P, Hemmingsen M, Sabourin D, Blaga FS, Bruus H, Dufva M (2012) A self-contained, programmable microfluidic cell culture system with real-time microscopy access. Biomed Microdevice 14(2):385–399CrossRefGoogle Scholar
  46. Tang Y, Zhen L, Liu J, Wu J (2013) Rapid antibiotic susceptibility testing in a microfluidic pH sensor. Anal Chem 85(5):2787–2794CrossRefGoogle Scholar
  47. Van Boeckel TP, Gandra S, Ashok A, Caudron Q, Grenfell BT, Levin SA, Laxminarayan R (2014) Global antibiotic consumption 2000 to 2010: an analysis of national pharmaceutical sales data. Lancet Infect Dis 14(8):742–750CrossRefGoogle Scholar
  48. Ventola CL (2015) The antibiotic resistance crisis: part 1: causes and threats. Pharm Ther 40(4):277–283Google Scholar
  49. Webster TA, Sismaet HJ, Chan IPJ, Goluch ED (2015) Electrochemically monitoring the antibiotic susceptibility of Pseudomonas aeruginosa biofilms. Analyst 140(21):7195–7201CrossRefGoogle Scholar
  50. Xue Y, Wang M, Zhao P, Quan C, Li X, Wang L, Gao W, Li J, Zu X, Fu D, Feng S, Li P (2018) Gram-negative bacilli-derived peptide antibiotics developed since 2000. Biotechnol Lett 40:1271–1287CrossRefGoogle Scholar

Copyright information

© Springer Media B.V. 2018

Authors and Affiliations

  1. 1.School of Mechanical EngineeringKorea University of Technology and EducationCheonanSouth Korea

Personalised recommendations