Advertisement

Bacteriocin encapsulation for food and pharmaceutical applications: advances in the past 20 years

  • Gobinath ChandrakasanEmail author
  • Adriana-Inés Rodríguez-Hernández
  • Ma. del Rocío López-Cuellar
  • Heidi-María Palma-Rodríguez
  • Norberto Chavarría-Hernández
Review
  • 8 Downloads

Abstract

The encapsulation of bacteriocins from lactic acid bacteria has involved several methods to protect them from unfavourable environmental conditions and incompatibilities. This review encompasses different methods for the encapsulation of bacteriocins and their applications in both food and pharmaceutical fields. Based on the bibliometric analysis of publications from well-reputed journals including different available patents during the period from 1996 to 2017, 135 articles and 60 patents were collected. Continent-wise contributions to the bacteriocins encapsulation research were carried out by America (52%), Asia (29%) and Europe (19%); with the United States of America, Brazil, Thailand and Italy the countries with major contributions. Till date, different methods proposed for encapsulation have been (i) Film coatings (50%), (ii) Liposomes (23%), (iii) Nanofibers (22%) and (iv) Nanoparticles (4%). Bacteriocins encapsulation methods frequently carried out in food protection (70%); while in the pharmaceutical field, 30% of the research was conducted on multi drug resistant therapy.

Keywords

Antimicrobial activity Bacteriocins Drug delivery Encapsulation Nanotechnology 

Notes

Acknowledgements

Authors acknowledge GCh-Posdoctoral Fellow PRODEP-SEP 2016, DSA/103.5/16/5849; CONACyT INFRA 2014, No. 230138; CONACyT INFRA 2015, No. 254437; CONACyT INFRA 2016, No. 269805, and Red PRODEP-SEP 2016/2017 “Diseño y Caracterización de Películas Alimentarias a base de Biopolímeros y Antimicrobianos Naturales”.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Ahire JJ, Dicks LM (2015) Nisin incorporated with 2,3-dihydroxybenzoic acid in nanofibers inhibits biofilm formation by a methicillin-resistant strain of Staphylococcus aureus. Probiotics Antimicrob 7(1):52–59.  https://doi.org/10.1007/s12602-014-9171-5 CrossRefGoogle Scholar
  2. Ahire JJ, Neveling DP, Dicks LM (2015) Co-spinning of silver nanoparticles with nisin increases the antimicrobial spectrum of PDLLA: PEO nanofibers. Curr Microbiol 71(1):24–30.  https://doi.org/10.1007/s00284-015-0813-y CrossRefPubMedGoogle Scholar
  3. Al-Mahrous MM, Upton M (2011) Discovery and development of lantibiotics; antimicrobial agents that have significant potential for medical application. Expert Opin Drug Discov 6(2):155–170.  https://doi.org/10.1517/17460441.2011.545387 CrossRefPubMedGoogle Scholar
  4. Arevalos-Sánchez M, Regalado C, Martin SE, Domínguez-Domínguez J, García-Almendárez BE (2012) Effect of neutral electrolyzed water and nisin on Listeria monocytogenes biofilms, and on listeriolysin O activity. Food Control 24(1–2):116–122.  https://doi.org/10.1016/j.foodcont.2011.09.012 CrossRefGoogle Scholar
  5. Behary N, Kerkeni A, Perwuelz A, Chihib NE, Dhulster P (2013) Bioactivation of PETwoven fabrics using alginate biopolymer and the bacteriocin nisin. Text Res J 83(11):1120–1129.  https://doi.org/10.1177/0040517512471743 CrossRefGoogle Scholar
  6. Benmechernene Z, Fernandez-No I, Kihal M, Bohme K, Calo-Mata P, Barros-Velazquez J (2013) Recent patents on bacteriocins: food and biomedical applications. Recent Pat DNA Gene Seq 7(1):66–73.  https://doi.org/10.2174/1872215611307010010 CrossRefPubMedGoogle Scholar
  7. Bernela M, Kaur P, Chopra M, Thakur R (2014) Synthesis, characterization of nisin loaded alginate–chitosan–pluronic composite nanoparticles and evaluation against microbes. LWT Food Sci Technol 59(2):1093–1099.  https://doi.org/10.1016/j.lwt.2014.05.061 CrossRefGoogle Scholar
  8. Bhunia AK, Yao Y (2014) Carbohydrate nanoparticles for prolonged efficacy of antimicrobial peptide. U.S. Patent Application 13/983,585Google Scholar
  9. Bi L, Yang L, Bhunia AK, Yao Y (2011a) Carbohydrate nanoparticle-mediated colloidal assembly for prolonged efficacy of bacteriocin against food pathogen. Biotechnol Bioeng 108(7):1529–1536.  https://doi.org/10.1002/bit.23099 CrossRefPubMedGoogle Scholar
  10. Bi L, Yang L, Narsimhan G, Bhunia AK, Yao Y (2011b) Designing carbohydrate nanoparticles for prolonged efficacy of antimicrobial peptide. J Control Release 150(2):150–156.  https://doi.org/10.1016/j.jconrel.2010.11.024 CrossRefPubMedGoogle Scholar
  11. Blackburn P, Goldstein BP, Cook DJ (1998) Compositions with activity against helicobacter. U.S. Patent 5,804,549Google Scholar
  12. Blanco Massani M, Morando PJ, Vignolo GM, Eisenberg P (2012) Characterization of a multilayer film activated with Lactobacillus curvatus CRL705 bacteriocins. J Sci Food Agric 92(6):1318–1323.  https://doi.org/10.1002/jsfa.4703 CrossRefPubMedGoogle Scholar
  13. Boualem K, Subirade M, Desjardins Y, Saucier L (2013) Development of an encapsulation system for the protection and controlled release of antimicrobial nisin at meat cooking temperature. J Food Res 2(3):36.  https://doi.org/10.5539/jfr.v2n3p36 CrossRefGoogle Scholar
  14. Breukink E, de Kruijff B (2006) Lipid II as a target for antibiotics. Nat Rev Drug Discov 5(4):321–332.  https://doi.org/10.1038/nrd2004 CrossRefPubMedGoogle Scholar
  15. Cao-Hoang L, Chaine A, Gregoire L, Wache Y (2010) Potential of nisin-incorporated sodium caseinate films to control Listeria in artificially contaminated cheese. Food Microbiol 27(7):940–944.  https://doi.org/10.1016/j.fm.2010.05.025 CrossRefPubMedGoogle Scholar
  16. Cha DS, Cooksey K, Chinnan MS, Park HJ (2003) Release of nisin from various heat-pressed and cast films. Lebensm-Wiss Technol 36(2):209–213.  https://doi.org/10.1016/S0023-6438(02)00209-8 CrossRefGoogle Scholar
  17. Chen G, Zhou M, Chen S, Lv G, Yao J (2009) Nanolayer biofilm coated on magnetic nanoparticles by using a dielectric barrier discharge glow plasma fluidized bed for immobilizing an antimicrobial peptide. Nanotechnology 20(46):465706.  https://doi.org/10.1088/0957-4484/20/46/465706 CrossRefPubMedGoogle Scholar
  18. Chen H, Narsimhan G, Yao Y (2015) Particulate structure of phytoglycogen studied using beta-amylolysis. Carbohydr Polym 132:582–588.  https://doi.org/10.1016/j.carbpol.2015.06.074 CrossRefPubMedGoogle Scholar
  19. Chi-Zhang YD, Yam KL, Chikindas ML (2004) Effective control of Listeria monocytogenes by combination of nisin formulated and slowly released into a broth system. Int J Food Microbiol 90(1):15–22.  https://doi.org/10.1016/S0168-1605(03)00168-5 CrossRefPubMedGoogle Scholar
  20. Chopra M, Kaur P, Bernela M, Thakur R (2014) Surfactant assisted nisin loaded chitosan-carageenan nanocapsule synthesis for controlling food pathogens. Food Control 37:158–164.  https://doi.org/10.1016/j.foodcont.2013.09.024 CrossRefGoogle Scholar
  21. Cleveland J, Montville TJ, Nes IF, Chikindas ML (2001) Bacteriocins: safe, natural antimicrobials for food preservation. Int J Food Microbiol 71(1):1–20.  https://doi.org/10.1016/S0168-1605(01)00560-8 CrossRefPubMedGoogle Scholar
  22. Coma V, Sebti I, Pardon P, Deschamps A, Pichavant FH (2001) Antimicrobial edible packaging based on cellulosic ethers, fatty acids, and nisin incorporation to inhibit Listeria innocua and Staphylococcus aureus. J Food Prot 64(4):470–475.  https://doi.org/10.4315/0362-028X-64.4.470 CrossRefPubMedGoogle Scholar
  23. Coppage R, Slocik JM, Ramezani-Dakhel H, Bedford NM, Heinz H, Naik RR, Knecht MR (2013) Exploiting localized surface binding effects to enhance the catalytic reactivity of peptide-capped nanoparticles. J Am Chem Soc 135(30):11048–11054.  https://doi.org/10.1021/ja402215t CrossRefPubMedGoogle Scholar
  24. da Silva Malheiros P, Daroit DJ, Brandelli A (2010a) Food applications of liposome-encapsulated antimicrobial peptides. Trends Food Sci Technol 21(6):284–292.  https://doi.org/10.1016/j.tifs.2010.03.003 CrossRefGoogle Scholar
  25. da Silva Malheiros P, Daroit DJ, da Silveira NP, Brandelli A (2010b) Effect of nanovesicle-encapsulated nisin on growth of Listeria monocytogenes in milk. Food Microbiol 27(1):175–178.  https://doi.org/10.1016/j.fm.2009.09.013 CrossRefGoogle Scholar
  26. da Silva Malheiros P, Micheletto YMS, Silveira NPd, Brandelli A (2010c) Development and characterization of phosphatidylcholine nanovesicles containing the antimicrobial peptide nisin. Food Res Int 43(4):1198–1203.  https://doi.org/10.1016/j.foodres.2010.02.015 CrossRefGoogle Scholar
  27. da Silva Malheiros P, Sant’Anna V, Utpott M, Brandelli A (2012a) Antilisterial activity and stability of nanovesicle-encapsulated antimicrobial peptide P34 in milk. Food Control 23(1):42–47.  https://doi.org/10.1016/j.foodcont.2011.06.008 CrossRefGoogle Scholar
  28. da Silva Malheiros P, Sant’Anna V, de Souza Barbosa M, Brandelli A, de Melo Franco BDG (2012b) Effect of liposome-encapsulated nisin and bacteriocin-like substance P34 on Listeria monocytogenes growth in minas frescal cheese. Int J Food Microbiol 156(3):272–277.  https://doi.org/10.1016/j.ijfoodmicro.2012.04.004 CrossRefGoogle Scholar
  29. de Arauz LJ, Jozala AF, Mazzola PG, Vessoni Penna TC (2009) Nisin biotechnological production and application: a review. Trends Food Sci Technol 20(3–4):146–154.  https://doi.org/10.1016/j.tifs.2009.01.056 CrossRefGoogle Scholar
  30. de Mello MB, da silva Malheiros P, Brandelli A, Silveira NP, Jantzen MM, da Motta AD (2013) Characterization and antilisterial effect of phosphatidylcholine nanovesicles containing the antimicrobial peptide pediocin. Probiotics Antimicrob Proteins 5(1):43–50.  https://doi.org/10.1007/s12602-013-9125-3 CrossRefPubMedGoogle Scholar
  31. Deegan LH, Cotter PD, Hill C, Ross P (2006) Bacteriocins: biological tools for bio-preservation and shelf-life extension. Int Dairy J 16(9):1058–1071.  https://doi.org/10.1016/j.idairyj.2005.10.026 CrossRefGoogle Scholar
  32. Dheraprasart C, Rengpipat S, Supaphol P, Tattiyakul J (2009) Morphology, release characteristics, and antimicrobial effect of nisin-loaded electrospun gelatin fiber mat. J Food Prot 72(11):2293–2300.  https://doi.org/10.4315/0362-028X-72.11.2293 CrossRefPubMedGoogle Scholar
  33. Dosler S, Mataraci E (2013) In vitro pharmacokinetics of antimicrobial cationic peptides alone and in combination with antibiotics against methicillin resistant Staphylococcus aureus biofilms. Peptides 49:53–58.  https://doi.org/10.1016/j.peptides.2013.08.008 CrossRefPubMedGoogle Scholar
  34. Duncan TV (2011) Applications of nanotechnology in food packaging and food safety: barrier materials, antimicrobials and sensors. J Colloid Interface Sci 363(1):1–24.  https://doi.org/10.1016/j.jcis.2011.07.017 CrossRefPubMedGoogle Scholar
  35. Ercolini D, Ferrocino I, La Storia A, Mauriello G, Gigli S, Masi P, Villani F (2010) Development of spoilage microbiota in beef stored in nisin activated packaging. Food Microbiol 27(1):137–143.  https://doi.org/10.1016/j.fm.2009.09.006 CrossRefPubMedGoogle Scholar
  36. Eswaranandam S, Hettiarachchy NS, Johnson MG (2004) Antimicrobial activity of citric, lactic, malic, or tartaric acids and nisin-incorporated soy protein film against Listeria monocytogenes, Escherichia coli O157: H7, and Salmonella gaminara. J Food Sci 69(3):M79–M84.  https://doi.org/10.1111/j.1365-2621.2004.tb13375.x CrossRefGoogle Scholar
  37. Fahim HA, El Rouby WM, El-Gendy AO, Khairalla AS, Naguib IA, Farghali AA (2017) Enhancement of the productivity of the potent bacteriocin avicin A and improvement of its stability using nanotechnology approaches. Sci Rep 7(1):10604.  https://doi.org/10.1038/s41598-017-10157-9 CrossRefPubMedPubMedCentralGoogle Scholar
  38. Field D, O’Connor R, Cotter PD, Ross RP, Hill C (2016a) In Vitro activities of nisin and nisin derivatives alone and in combination with antibiotics against Staphylococcus biofilms. Front Microbiol 7:508.  https://doi.org/10.3389/fmicb.2016.00508 CrossRefPubMedPubMedCentralGoogle Scholar
  39. Field D, Seisling N, Cotter PD, Ross RP, Hill C (2016b) Synergistic nisin-polymyxin combinations for the control of Pseudomonas biofilm formation. Front Microbiol 7:1713.  https://doi.org/10.3389/fmicb.2016.01713 CrossRefPubMedPubMedCentralGoogle Scholar
  40. Galvez A, Abriouel H, Lopez RL, Omar NB (2007) Bacteriocin-based strategies for food biopreservation. Int J Food Microbiol 120(1–2):51–70.  https://doi.org/10.1016/j.ijfoodmicro.2007.06.001 CrossRefPubMedGoogle Scholar
  41. Gharsallaoui A, Oulahal N, Joly C, Degraeve P (2016) Nisin as a food preservative: part 1: physicochemical properties, antimicrobial activity, and main uses. Crit Rev Food Sci Nutr 56(8):1262–1274.  https://doi.org/10.1080/10408398.2013.763765 CrossRefPubMedGoogle Scholar
  42. Guiga W, Swesi Y, Galland S, Peyrol E, Degraeve P, Sebti I (2010) Innovative multilayer antimicrobial films made with Nisaplin® or nisin and cellulosic ethers: physico-chemical characterization, bioactivity and nisin desorption kinetics. Innov Food Sci Emerg Technol 11(2):352–360.  https://doi.org/10.1016/j.ifset.2010.01.008 CrossRefGoogle Scholar
  43. Hanchi H, Hammami R, Gingras H, Kourda R, Bergeron MG, Ben Hamida J, Ouellette M, Fliss I (2017) Inhibition of MRSA and of Clostridium difficile by durancin 61A: synergy with bacteriocins and antibiotics. Future Microbiol 12(3):205–212.  https://doi.org/10.2217/fmb-2016-0113 CrossRefPubMedGoogle Scholar
  44. Heunis TD, Dicks LM (2010) Nanofibers offer alternative ways to the treatment of skin infections. J Biomed Biotechnol.  https://doi.org/10.1155/2010/510682 CrossRefPubMedPubMedCentralGoogle Scholar
  45. Heunis TD, Botes M, Dicks LM (2010) Encapsulation of Lactobacillus plantarum 423 and its bacteriocin in nanofibers. Probiotics Antimicrob Proteins 2(1):46–51.  https://doi.org/10.1007/s12602-009-9024-9 CrossRefPubMedGoogle Scholar
  46. Heunis TD, Bshena O, Klumperman B, Dicks LM (2011) Release of bacteriocins from nanofibers prepared with combinations of Poly(D, L-lactide) (PDLLA) and Poly(Ethylene Oxide) (PEO). Int J Mol Sci 12(4):2158–2173.  https://doi.org/10.3390/ijms12042158 CrossRefPubMedPubMedCentralGoogle Scholar
  47. Heunis TD, Smith C, Dicks LM (2013) Evaluation of a nisin-eluting nanofiber scaffold to treat Staphylococcus aureus-induced skin infections in mice. Antimicrob Agents Chemother 57:3928–3935.  https://doi.org/10.1128/AAC.00622-13 CrossRefPubMedPubMedCentralGoogle Scholar
  48. Hoffman KL, Han IY, Dawson PL (2001) Antimicrobial effects of corn zein films impregnated with nisin, lauric acid, and EDTA. J Food Prot 64(6):885–889.  https://doi.org/10.4315/0362-028X-64.6.885 CrossRefPubMedGoogle Scholar
  49. Huq T, Riedl B, Bouchard J, Salmieri S, Lacroix M (2014) Microencapsulation of nisin in alginate-cellulose nanocrystal (CNC) microbeads for prolonged efficacy against Listeria monocytogenes. Cellulose 21(6):4309–4321.  https://doi.org/10.1007/s10570-014-0432-y CrossRefGoogle Scholar
  50. Imran M, Revol-Junelles AM, Francius G, Desobry S (2016) Diffusion of fluorescently labeled bacteriocin from edible nanomaterials and embedded nano-bioactive coatings. ACS Appl Mater Interfaces 8(33):21618–21631.  https://doi.org/10.1021/acsami.6b04621 CrossRefPubMedGoogle Scholar
  51. Iseppi R, Pilati F, Marini M, Toselli M, de Niederhäusern S, Guerrieri E, Messi P, Sabia C, Manicardi G, Anacarso I, Bondi M (2008) Anti-listerial activity of a polymeric film coated with hybrid coatings doped with Enterocin 416K1 for use as bioactive food packaging. Int J Food Microbiol 123(3):281–287.  https://doi.org/10.1016/j.ijfoodmicro.2007.12.015 CrossRefPubMedGoogle Scholar
  52. Jamuna M, Babusha ST, Jeevaratnam K (2005) Inhibitory efficacy of nisin and bacteriocins from Lactobacillus isolates against food spoilage and pathogenic organisms in model and food systems. Food Microbiol 22(5):449–454.  https://doi.org/10.1016/j.fm.2004.11.008 CrossRefGoogle Scholar
  53. Jiménez-Villeda PY, Rodríguez-Hernández AI, López-Cuellar M, Franco-Fernández MJ, Chavarría-Hernández N (2018) Elaboration and characterization of pectin-gellan films added with concentrated supernatant of Streptococcus infantarius fermentations, and EDTA: effects on the growth of Escherichia coli, Staphylococcus aureus and Listeria monocytogenes in a Mexican cheese medium, and physical-mechanical properties. Food Sci Technol.  https://doi.org/10.1590/fst.32717 CrossRefGoogle Scholar
  54. Jones E, Salin V, Williams GW (2005) Nisin and the market for commercial bacteriocins. Consumer and Product Research CP-01-05, Texas Agribusiness Market Research Center, Texas A&M University, College Station, Tex, USAGoogle Scholar
  55. Khan I, Oh DH (2016) Integration of nisin into nanoparticles for application in foods. Innov Food Sci Emerg Technol 34:376–384.  https://doi.org/10.1016/j.ifset.2015.12.013 CrossRefGoogle Scholar
  56. Kristo E, Koutsoumanis KP, Biliaderis CG (2008) Thermal, mechanical and water vapor barrier properties of sodium caseinate films containing antimicrobials and their inhibitory action on Listeria monocytogenes. Food Hydrocoll. 22(3):373–386.  https://doi.org/10.1016/j.foodhyd.2006.12.003 CrossRefGoogle Scholar
  57. Lara HH, Ayala-Núñez NV, Turrent LD, Padilla CR (2009) Bactericidal effect of silver nanoparticles against multidrug-resistant bacteria. World J Microbiol Biotechnol 26(4):615–621.  https://doi.org/10.1007/s11274-009-0211-3 CrossRefGoogle Scholar
  58. Laridi R, Kheadr EE, Benech RO, Vuillemard JC, Lacroix C, Fliss I (2003) Liposome encapsulated nisin Z: optimization, stability and release during milk fermentation. Int Dairy J 13(4):325–336.  https://doi.org/10.1016/S0958-6946(02)00194-2 CrossRefGoogle Scholar
  59. Lewinski N, Colvin V, Drezek R (2008) Cytotoxicity of nanoparticles. Small 4(1):26–49.  https://doi.org/10.1002/smll.200700595 CrossRefPubMedGoogle Scholar
  60. Lopes NA, Brandelli A (2017) Nanostructures for delivery of natural antimicrobials in food. Crit Rev Food Sci Nutr.  https://doi.org/10.1080/10408398.2017.1308915 CrossRefPubMedGoogle Scholar
  61. Lobos O, Padilla A, Padilla C (2009) In vitro antimicrobial effect of bacteriocin PsVP-10 in combination with chlorhexidine and triclosan against Streptococcus mutans and Streptococcus sobrinus strains. Arch Oral Biol 54(3):230–234.  https://doi.org/10.1016/j.archoralbio.2008.11.007 CrossRefPubMedGoogle Scholar
  62. Luong-Van E, Grondahl L, Chua KN, Leong KW, Nurcombe V, Cool SM (2006) Controlled release of heparin from poly(epsilon-caprolactone) electrospun fibers. Biomaterials 27(9):2042–2050.  https://doi.org/10.1016/j.biomaterials.2005.10.028 CrossRefPubMedGoogle Scholar
  63. Maretschek S, Greiner A, Kissel T (2008) Electrospun biodegradable nanofiber nonwovens for controlled release of proteins. J Control Release 127(2):180–187.  https://doi.org/10.1016/j.jconrel.2008.01.011 CrossRefPubMedGoogle Scholar
  64. Mauriello G, De Luca E, La Storia A, Villani F, Ercolini D (2005) Antimicrobial activity of a nisin-activated plastic film for food packaging. Lett Appl Microbiol 41(6):464–469.  https://doi.org/10.1111/j.1472-765X.2005.01796.x CrossRefPubMedGoogle Scholar
  65. Mossallam SF, Amer EI, Diab RG (2014) Potentiated anti-microsporidial activity of Lactobacillus acidophilus CH1 bacteriocin using gold nanoparticles. Exp Parasitol 144:14–21.  https://doi.org/10.1016/j.exppara.2014.06.002 CrossRefPubMedGoogle Scholar
  66. Mozafari MR (2007) Nanomaterials and nanosystems for biomedical applications. Springer, New York.  https://doi.org/10.1007/978-1-4020-6289-6 CrossRefGoogle Scholar
  67. Mozafari MR, Johnson C, Hatziantoniou S, Demetzos C (2008) Nanoliposomes and their applications in food nanotechnology. J Liposome Res 18(4):309–327.  https://doi.org/10.1080/08982100802465941 CrossRefPubMedGoogle Scholar
  68. Natrajan N, Sheldon BW (2000a) Efficacy of nisin-coated polymer films to inactivate Salmonella typhimurium on fresh broiler skin. J Food Prot 63(9):1189–1196.  https://doi.org/10.4315/0362-028X-63.9.1189 CrossRefPubMedGoogle Scholar
  69. Natrajan N, Sheldon BW (2000b) Inhibition of Salmonella on poultry skin using protein- and polysaccharide-based films containing a nisin formulation. J Food Prot 63(9):1268–1272.  https://doi.org/10.4315/0362-028X-63.9.1268 CrossRefPubMedGoogle Scholar
  70. Nauth KR, Lynum M (2000) Stabilization of mayonnaise spreads using whey from nisin-producing cultures. U.S. Patent 6,113,954Google Scholar
  71. Neetoo H, Ye M, Chen H, Joerger RD, Hicks DT, Hoover DG (2008) Use of nisin-coated plastic films to control Listeria monocytogenes on vacuum-packaged cold-smoked salmon. Int J Food Microbiol 122(1–2):8–15.  https://doi.org/10.1016/j.ijfoodmicro.2007.11.043 CrossRefPubMedGoogle Scholar
  72. Nguyen VT, Gidley MJ, Dykes GA (2008) Potential of a nisin-containing bacterial cellulose film to inhibit Listeria monocytogenes on processed meats. Food Microbiol 25(3):471–478.  https://doi.org/10.1016/j.fm.2008.01.004 CrossRefPubMedGoogle Scholar
  73. Nilsson L, Chen Y, Chikindas ML, Huss HH, Gram L, Montville TJ (2000) Carbon dioxide and nisin act synergistically on Listeria monocytogenes. J Appl Environ Microbiol 66(2):769–774.  https://doi.org/10.1128/AEM.66.2.769-774.2000 CrossRefGoogle Scholar
  74. Nitta SK, Numata K (2013) Biopolymer-based nanoparticles for drug/gene delivery and tissue engineering. Int J Mol Sci 14(1):1629–1654.  https://doi.org/10.3390/ijms14011629 CrossRefPubMedPubMedCentralGoogle Scholar
  75. Pham QP, Sharma U, Mikos AG (2006) Electrospinning of polymeric nanofibers for tissue engineering applications: a review. Tissue Eng Part C 12(5):1197–1211.  https://doi.org/10.1089/ten.2006.12.1197 CrossRefGoogle Scholar
  76. Pranoto Y, Rakshit SK, Salokhe VM (2005) Enhancing antimicrobial activity of chitosan films by incorporating garlic oil, potassium sorbate and nisin. LWT Food Sci Technol 38(8):859–865.  https://doi.org/10.1016/j.lwt.2004.09.014 CrossRefGoogle Scholar
  77. Prombutara P, Kulwatthanasal Y, Supaka N, Sramala I, Chareonpornwattana S (2012) Production of nisin-loaded solid lipid nanoparticles for sustained antimicrobial activity. Food Control 24(1–2):184–190.  https://doi.org/10.1016/j.foodcont.2011.09.025 CrossRefGoogle Scholar
  78. Puri A, Loomis K, Smith B, Lee JH, Yavlovich A, Heldman E, Blumenthal R (2009) Lipid-based nanoparticles as pharmaceutical drug carriers: from concepts to clinic. Crit Rev Ther Drug Carrier Syst 26(6):523–580.  https://doi.org/10.1615/CritRevTherDrugCarrierSyst.v26.i6.10 CrossRefPubMedPubMedCentralGoogle Scholar
  79. Reis CP, Neufeld RJ, Ribeiro AJ, Veiga F (2006) Nanoencapsulation II. Biomedical applications and current status of peptide and protein nanoparticulate delivery systems. Nanomed Nanotechnol 2(2):53–65CrossRefGoogle Scholar
  80. Ross RP, Hill C (2004) Spray-dried bacteriocin powder with anti-microbial activity. U.S. Patent 6,833,150Google Scholar
  81. Ross RP, Morgan S, Hill C (2002) Preservation and fermentation: past, present and future. Int J Food Microbiol 79(1–2):3–16.  https://doi.org/10.1016/S0168-1605(02)00174-5 CrossRefPubMedPubMedCentralGoogle Scholar
  82. Salmaso S, Elvassore N, Bertucco A, Lante A, Caliceti P (2004) Nisin-loaded poly-L-lactide nano-particles produced by CO2 anti-solvent precipitation for sustained antimicrobial activity. Int J Pharm 287(1–2):163–173.  https://doi.org/10.1016/j.ijpharm.2004.09.003 CrossRefPubMedGoogle Scholar
  83. Sanguansri P, Augustin MA (2006) Nanoscale materials development—a food industry perspective. Trends Food Sci Technol 17(10):547–556.  https://doi.org/10.1016/j.tifs.2006.04.010 CrossRefGoogle Scholar
  84. Sant’Anna V, da Silva Malheiros P, Brandelli A (2011) Liposome encapsulation protects bacteriocin-like substance P34 against inhibition by Maillard reaction products. Food Res Int 44(1):326–330.  https://doi.org/10.1016/j.foodres.2010.10.012 CrossRefGoogle Scholar
  85. Schaefer L, Auchtung TA, Hermans KE, Whitehead D, Borhan B, Britton RA (2010) The antimicrobial compound reuterin (3-hydroxypropionaldehyde) induces oxidative stress via interaction with thiol groups. Microbiology 156(6):1589–1599.  https://doi.org/10.1099/mic.0.035642-0 CrossRefPubMedGoogle Scholar
  86. Seil JT, Webster TJ (2012) Antimicrobial applications of nanotechnology: methods and literature. Int J Nanomed 7:2767–2781.  https://doi.org/10.2147/IJN.S24805 CrossRefGoogle Scholar
  87. Settanni L, Corsetti A (2008) Application of bacteriocins in vegetable food biopreservation. Int J Food Microbiol 121(2):123–138.  https://doi.org/10.1016/j.ijfoodmicro.2007.09.001 CrossRefPubMedGoogle Scholar
  88. Sharma TK, Sapra M, Chopra A, Sharma R, Patil SD, Malik RK, Pathania R, Navani NK (2012) Interaction of bacteriocin-capped silver nanoparticles with food pathogens and their antibacterial effect. Int J Green Nanotechnol Biomed 4(2):93–110.  https://doi.org/10.1080/19430892.2012.678757 CrossRefGoogle Scholar
  89. Shrivastava S, Dash D (2009) Applying nanotechnology to human health: revolution in biomedical sciences. J Nanotechnol.  https://doi.org/10.1155/2009/184702 CrossRefGoogle Scholar
  90. Sidhu PK, Nehra K (2017) Bacteriocin-nanoconjugates as emerging compounds for enhancing antimicrobial activity of bacteriocins. JKSUS.  https://doi.org/10.1016/j.jksus.2017.12.007 CrossRefGoogle Scholar
  91. Soppimath KS, Aminabhavi TM, Kulkarni AR, Rudzinski WE (2001) Biodegradable polymeric nanoparticles as drug delivery devices. J Control Release 70(1–2):1–20.  https://doi.org/10.1016/S0168-3659(00)00339-4 CrossRefPubMedGoogle Scholar
  92. Taylor TM, Bruce BD, Weiss J, Davidson PM (2008) Listeria monocytogenes and Escherichia coli O157: H7 inhibition in vitro by liposome-encapsulated nisin and ethylene diaminetetraacetic acid. J Food Saf 28(2):183–197.  https://doi.org/10.1111/j.1745-4565.2008.00113.x CrossRefGoogle Scholar
  93. Teixeira ML, Santos J, Silveira NP, Brandelli A (2008) Phospholipid nanovesicles containing a bacteriocin-like substance for control of Listeria monocytogenes. Innov Food Sci Emerg Technol 9(1):49–53.  https://doi.org/10.1016/j.ifset.2007.05.001 CrossRefGoogle Scholar
  94. Thakor AS, Jokerst J, Zavaleta C, Massoud TF, Gambhir SS (2011) Gold nanoparticles: a revival in precious metal administration to patients. Nano Lett 11(10):4029–4036.  https://doi.org/10.1021/nl202559p CrossRefPubMedPubMedCentralGoogle Scholar
  95. Thio BJ, Montes MO, Mahmoud MA, Lee DW, Zhou D, Keller AA (2012) Mobility of capped silver nanoparticles under environmentally relevant conditions. Environ Sci Technol 46(13):6985–6991.  https://doi.org/10.1021/es203596w CrossRefPubMedGoogle Scholar
  96. Thirumurugan A, Ramachandran S, Shiamala Gowri A (2013) Combined effect of bacteriocin with gold nanoparticles against food spoiling bacteria—an approach for food packaging material preparation. Food Res Int 20(4):1909–1912Google Scholar
  97. Tong Z, Zhang L, Ling J, Jian Y, Huang L, Deng D (2014a) An in vitro study on the effect of free amino acids alone or in combination with nisin on biofilms as well as on planktonic bacteria of Streptococcus mutans. PLoS ONE 9(6):e99513.  https://doi.org/10.1371/journal.pone.0099513 CrossRefPubMedPubMedCentralGoogle Scholar
  98. Tong Z, Zhang Y, Ling J, Ma J, Huang L, Zhang L (2014b) An in vitro study on the effects of nisin on the antibacterial activities of 18 antibiotics against Enterococcus faecalis. PLoS ONE 9(2):e89209.  https://doi.org/10.1371/journal.pone.0089209 CrossRefPubMedPubMedCentralGoogle Scholar
  99. Torres NI, Noll KS, Xu S, Li J, Huang Q, Sinko PJ, Wachsman MB, Chikindas ML (2013) Safety, formulation and in vitro antiviral activity of the antimicrobial peptide subtilosin against Herpes simplex virus type 1. Probiotics Antimicrob Proteins 5(1):26–35.  https://doi.org/10.1007/s12602-013-9128-0 CrossRefPubMedPubMedCentralGoogle Scholar
  100. Trejo-González L, Rodríguez-Hernández AI, López-Cuellar M, Martínez-Juárez VM, Chavarría-Hernández N (2018) Antimicrobial pectin-gellan films: effects on three foodborne pathogens in a meat medium, and selected physical-mechanical properties. CyTA J Food 16(1):469–476.  https://doi.org/10.1080/19476337.2017.1422278 CrossRefGoogle Scholar
  101. van Staden AD, Heunis TD, Dicks LM (2011) Release of Enterococcus mundtii bacteriocin ST4SA from self- setting brushite bone cement. Probiotics Antimicrob Proteins 3(2):119–124.  https://doi.org/10.1007/s12602-011-9074-7 CrossRefPubMedGoogle Scholar
  102. van Staden AD, Brand AM, Dicks LM (2012) Nisin F-loaded brushite bone cement prevented the growth of Staphylococcus aureus in vivo. J Appl Microbiol 112(4):831–840.  https://doi.org/10.1111/j.1365-2672.2012.05241.x CrossRefPubMedGoogle Scholar
  103. Were LM, Bruce BD, Davidson PM, Weiss J (2003) Size, stability, and entrapment efficiency of phospholipid nanocapsules containing polypeptide antimicrobials. J Agric Food Chem 51(27):8073–8079.  https://doi.org/10.1021/jf0348368 CrossRefPubMedGoogle Scholar
  104. Williams GR, Chatterton NP, Nazir T, Yu DG, Zhu LM, Branford-White CJ (2012) Electrospun nanofibers in drug delivery: recent developments and perspectives. Ther Deliv 3(4):515–533.  https://doi.org/10.4155/tde.12.17 CrossRefPubMedGoogle Scholar
  105. Yadav SC, Kumari A, Yadav R (2011) Development of peptide and protein nanotherapeutics by nanoencapsulation and nanobioconjugation. Peptides 32(1):173–187.  https://doi.org/10.1016/j.peptides.2010.10.003 CrossRefPubMedGoogle Scholar
  106. Zhang L, Pornpattananangkul D, Hu CM, Huang CM (2010) Development of nanoparticles for antimicrobial drug delivery. Curr Med Chem 17(6):585–594.  https://doi.org/10.2174/092986710790416290 CrossRefPubMedGoogle Scholar
  107. Zinjarde S (2012) Bio-inspired nanomaterials and their applications as antimicrobial agents. Chron Young Sci 3(1):74.  https://doi.org/10.4103/2229-5186.94314 CrossRefGoogle Scholar
  108. Zohri M, Alavidjeh MS, Haririan I, Ardestani MS, Ebrahimi SE, Sani HT, Sadjadi SK (2010) A comparative study between the antibacterial effect of nisin and nisin-loaded chitosan/alginate nanoparticles on the growth of Staphylococcus aureus in raw and pasteurized milk samples. Probiotics Antimicrob Proteins 2(4):258–266.  https://doi.org/10.1007/s12602-010-9047-2 CrossRefPubMedGoogle Scholar
  109. Zohri M, Alavidjeh MS, Mirdamadi SS, Behmadi H, Nasr SMH, Gonbaki SE, Ardestani MS, Arabzadeh AJ (2013) Nisin-loaded chitosan/alginate nanoparticles: a hopeful hybrid biopreservative. J Food Saf 33(1):40–49.  https://doi.org/10.1111/jfs.12021 CrossRefGoogle Scholar
  110. Zoumpopoulou G, Pepelassi E, Papaioannou W, Georgalaki M, Maragkoudakis PA, Tarantilis PA, Polissiou M, Tsakalidou E, Papadimitriou K (2013) Incidence of bacteriocins produced by food-related lactic acid bacteria active towards oral pathogens. Int J Mol Sci 14(3):4640–4654.  https://doi.org/10.3390/ijms14034640 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Media B.V. 2019

Authors and Affiliations

  1. 1.Cuerpo Académico de Biotecnología Agroalimentaria, Instituto de Ciencias AgropecuariasUniversidad Autónoma del Estado de HidalgoTulancingo de BravoMexico

Personalised recommendations