Skip to main content
Log in

Enhancement of 5-aminolevulinic acid production by metabolic engineering of the glycine biosynthesis pathway in Corynebacterium glutamicum

  • Original Research Paper
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

Objective

To construct a strain of Corynebacterium glutamicum capable of efficiently producing 5-aminolevulinic acid (5-ALA) via the C4 pathway by modification of serine and glycine pathway using glucose as sole carbon source.

Results

The recombinant C. glutamicum strain AP2 harboring a codon-optimized hemA gene from Rhodobacter sphaeroides was used as host strain for 5-ALA production. A plasmid harboring the serine operon, which contained serB, serC and the site-specific mutant serA Δ197, was constructed and introduced into C. glutamicumAP2, leading to an increase of 70% in 5-ALA production. Further overexpression of the glyA gene increased production of 5-ALA by 150% over the control. 5-ALA production was thus significantly enhanced by engineering the glycine biosynthetic pathway. C.glutamicum AG3 produced 3.4 ± 0.2 g 5-ALA/l in shake-flask cultures in CGIIIM medium with the addition of 7.5 g glycine/l.

Conclusion

This is the first report of remodeling the serine and glycine biosynthetic pathway to improve the production of 5-ALA in C. glutamicum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Chung S-Y, Seo K-H, Rhee JI (2005) Influence of culture conditions on the production of extra-cellular 5-aminolevulinic acid (ALA) by recombinant E. coli. Proc Biochem 40:385–394

    Article  CAS  Google Scholar 

  • Feng L, Zhang Y, Fu J, Mao Y, Chen T, Zhao X, Wang Z (2016) Metabolic engineering of Corynebacterium glutamicum for efficient production of 5-aminolevulinic acid. Biotechnol Bioeng 113:1284–1293

    Article  CAS  PubMed  Google Scholar 

  • Fu W, Lin J, Cen P (2008) Enhancement of 5-aminolevulinate production with recombinant Escherichia coli using batch and fed-batch culture system. Bioresour Technol 99:4864–4870

    Article  CAS  PubMed  Google Scholar 

  • Fu W, Lin J, Cen P (2010) Expression of a hemA gene from Agrobacterium radiobacter in a rare codon optimizing Escherichia coli for improving 5-aminolevulinate production. Appl Biochem Biotechnol 160:456–466

    Article  CAS  PubMed  Google Scholar 

  • Gu P, Yang F, Su T, Li F, Li Y, Qi Q (2014) Construction of an l-serine producing Escherichia coli via metabolic engineering. J Ind Microbiol Biotechnol 41:1443–1450

    Article  CAS  PubMed  Google Scholar 

  • Hemanshu M, Konstantin S, Hanne BC, Alex TN (2016) Engineering of high yield production of l-serine in Escherichia coli. Biotechnol Bioeng 113:807–816

    Article  Google Scholar 

  • Kang Z, Wang Y, Gu P, Wang Q, Qi Q (2011) Engineering Escherichia coli for efficient production of 5-aminolevulinic acid from glucose. Metab Eng 13:492–498

    Article  CAS  PubMed  Google Scholar 

  • Kiatpapan P, Murooka Y (2001) Construction of an expression vector for propionibacteria and its use in production of 5-aminolevulinic acid by Propionibacterium freudenreichii. Appl Microbiol Biotechnol 56:144–149

    Article  CAS  PubMed  Google Scholar 

  • Lai S, Zhang Y, Liu S, Liang Y, Shang X, Chai X, Wen T (2012) Metabolic engineering and flux analysis of Corynebacterium glutamicum for l-serine production. Sci China Life Sci 55:283–290

    Article  CAS  PubMed  Google Scholar 

  • Ma W, Wang X, Mao Y, Wang Z, Chen T, Zhao X (2015) Development of a markerless gene replacement system in Corynebacterium glutamicum using upp as a counter-selection marker. Biotechnol Lett 37:609–617

    Article  CAS  PubMed  Google Scholar 

  • Netzer R, Peters-Wendisch P, Eggeling L, Sahm H (2004) Cometabolism of a nongrowth substrate: l-serine utilization by Corynebacterium glutamicum. Appl Environ Microbiol 70:7148–7155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peters-Wendisch P, Netzer R, Eggeling L, Sahm H (2002) 3-Phosphoglycerate dehydrogenase from Corynebacterium glutamicum: the C-terminal domain is not essential for activity but is required for inhibition by l-serine. Appl Microbiol Biotechnol 60:437–441

    Article  CAS  PubMed  Google Scholar 

  • Peters-Wendisch PS, Etterich H, Kennerknecht N, Sahm H, Eggeling L (2005) Metabolic engineering of Corynebacterium glutamicum for l-serine production. Appl Environ Microbiol 71:7139–7144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pittard YZJPAHA (1994) Molecular analysis and characterization of a broad-host-range plasmid, pEP2. J Bacteriol 176:5718–5728

    Article  PubMed  PubMed Central  Google Scholar 

  • Qin G, Lin J, Liu X, Cen P (2006) Effects of medium composition on production of 5-aminolevulinic acid by recombinant Escherichia coli. J Biosci Bioeng 102:316–322

    Article  CAS  PubMed  Google Scholar 

  • Schweitzer JE, Stolz M, Diesveld R, Etterich H, Eggeling L (2009) The serine hydroxymethyltransferase gene glyA in Corynebacterium glutamicum is controlled by GlyR. J Biotechnol 139:214–221

    Article  CAS  PubMed  Google Scholar 

  • Simic P, Willuhn J, Sahm H, Eggeling L (2002) Identification of glyA (encoding serine hydroxymethyltransferase) and its use together with the exporter ThrE to increase l-threonine accumulation by Corynebacterium glutamicum. Appl Environ Microbiol 68:3321–3327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Unthan S et al (2014) Beyond growth rate 0.6: what drives Corynebacterium glutamicum to higher growth rates in defined medium. Biotechnol Bioeng 111:359–371

    Article  CAS  PubMed  Google Scholar 

  • Xu G et al (2015) Enhanced production of l-serine by deleting sdaA combined with modifying and overexpressing serA in a mutant of Corynebacterium glutamicum SYPS-062 from sucrose. Biochem Eng J 103:60–67

    Article  CAS  Google Scholar 

  • Zhang X, Xu G, Li H, Dou W, Xu H, Xu Z (2014) Effect of cofactor folate on the growth of Corynebacterium glutamicum SYPS-062 and l-serine accumulation. Appl Biochem Biotechnol 173:1607–1617

    Article  CAS  PubMed  Google Scholar 

  • Zhu N, Xia H, Wang Z, Zhao X, Chen T (2013) Engineering of acetate recycling and citrate synthase to improve aerobic succinate production in Corynebacterium glutamicum. PLoS ONE 8:e60659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of Tianjin (No. 15JCQNJC06000).

Supporting information

Supplementary Table 1—Strains and plasmids used.

Supplementary Table 2—Primers used.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiwen Wang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 22 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zou, Y., Chen, T., Feng, L. et al. Enhancement of 5-aminolevulinic acid production by metabolic engineering of the glycine biosynthesis pathway in Corynebacterium glutamicum . Biotechnol Lett 39, 1369–1374 (2017). https://doi.org/10.1007/s10529-017-2362-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-017-2362-x

Keywords

Navigation