Genetic Diversity and Structure Analysis Assessed by SSR Markers in a Large Collection of Vitis Cultivars from the Island of Crete, Greece

  • Androniki C. BibiEmail author
  • Evangelos D. Gonias
  • Andreas G. Doulis
Original Article


The grape (Vitis vinifera L.) cultivars in the island of Crete, Greece represent one of the oldest populations of the species; nevertheless, very scarce information is available about its genetic structure. In this study, Vitis cultivars collected from the island of Crete were characterized using microsatellite markers. A broad germplasm collection representing 44 inferred Vitis cultivars, a total of 163 accessions, from the area of Crete including 37 wine and 7 table cultivars were fingerprinted employing thirteen (13) standardized simple sequence repeat (SSR, microsatellite) loci. SSR allelic analysis and a similarity dendrogram construction (cluster analysis) was followed by a hierarchical STRUCTURE analysis. The mean observed (Ho) and expected heterozygosity (He) were 0.7372 and 0.7686, respectively. The cumulative probability of identity was very low with a value of 3.18 × 10e−15. According to the cluster analysis, twenty-nine of the 44 Vitis cultivars were presented in single clusters and five cultivars were presented as distinct single accessions. In addition, ten (10) cases of synonyms and ten (10) groups of homonyms were also identified. STRUCTURE analysis provided evidence for three genetic groups (putative ancestry groups). Hierarchical STRUCTURE analysis revealed further stratification within each of the three ancestry groups. This work provides the molecular fingerprinting of 44 Vitis cultivars and an initial proposal in their ancestry. In the future, molecular genetic information along with morphological (ampelographic) data will provide an intergraded characterization of existing diversity and will allow for its use in breeding efforts and in commercial viticulture.


Cretan grape Microsatellites Diversity STRUCTURE 



This project was funded in part through AgroETAK to Androniki C. Bibi (no. 3504/145) administered by HAO – DEMETER (responsible scientist, AGD) under the “Research, Technological Development & Innovation Projects” – in the framework of the Operational Program “Human Resources Development” MIS 453350. This was in turn co-financed by the European Union Social Fund and by Greece through the National Strategic Reference Framework (ESPA, Research Funding Program 2007–2013).

Author Contributions

AGD, ACB— Study conception and design. ACB, EDG, AGD— Acquisition of data. ACB, EDG, AGD— Analysis and interpretation of data. ACB, EDG, AGD— Drafting of manuscript. ACB, EDG, AGD— Critical revision. All authors read and approved the final manuscript.

Compliance with Ethical Standards

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.


  1. Agar G, Yildirim N, Ercisli S, Ergul A, Yuksel C (2012) Determination of genetic diversity of Vitis vinifera cv Kabarcik populations from the Coruh valley using SSR markers. Biochem Genet 50:476–483PubMedCrossRefGoogle Scholar
  2. Alba V Bergamini C, Cardone MF, Gasparro M, Perniola R, Genghi R, Antonacci D (2014) Morphological variability in leaves and molecular characterization of novel table grape candidate cultivars (Vitis vinifera L). Mol Biotechnol 56:557–570PubMedCrossRefGoogle Scholar
  3. Anagnostakis (2013). Noms de vignes et de raisins et techniques de vinification à Byzance. Continuité et rupture avec la viticulture de l'antiquité tardive. Food Hist 11(2):35–59CrossRefGoogle Scholar
  4. Anonymous (2018) https://www.Vitisagroknowcom/variety. Accessed May 2018
  5. Aradhya MK, Dang GS, Prins BH, Boursiquot JM, Walker MA, Meredith CP, Simon CJ (2003) Genetic structure and differentiation in cultivated grape Vitis vinifera L. Genet Res Camb 81:179–182CrossRefGoogle Scholar
  6. Banilas G, Korkas E, Caldas P, Hatzopoulos P (2009) Olive and grapevine biodiversity in Greece and Cyprus—a review In: Lichtfouse E (ed) Climate change intercropping pest control and a combined approach to study native grapevine varieties of Greece 103 beneficial microorganisms. Sust Agric Rev 2:401–428Google Scholar
  7. Biniari K and Stavrakakis MN (2007). Genetic study of 46 Greek grape cultivars with random amplified polymorphic DNA markers (RAPD-PCR). In: XXth OIV World Congress of Vine and Wine (Budapest 2007)Google Scholar
  8. Botstein D, White RL, Skolnick M, Davis RW (1980) Construction of genetic linkage map in man using restriction fragment length polymorphisms. Am J Hum Genet 32:314–331PubMedPubMedCentralGoogle Scholar
  9. Bowers JE, Bandman EB, Meredith CP (1993) DNA fingerprint characterization of some wine grape cultivars. Am J Enol Vitic 44:266–274Google Scholar
  10. Bowers JE, Dangl GS, Vignani R, Meredith CP (1996) Isolation and characterization of new polymorphic simple sequence repeat loci in grape (Vitis vinifera L). Genome 39:628–633CrossRefGoogle Scholar
  11. Bowers JE, Dangl GS, Meredith CP (1999) Development and characterization of additional microsatellite DNA markers for grape. Am J Enol Vitic 50:243–246Google Scholar
  12. Carimi F, Mercati F, Abbate L, Sunseri F (2010) Microsatellite analyses for evaluation of genetic diversity among Sicilian grapevine cultivars. Genet Resour Crop Evol 57(1):703–719CrossRefGoogle Scholar
  13. Cipriani G, Marrazzo MT, Di Gaspero G, Pfeiffer A, Morgante M, Testolin R (2008) A set of microsatellite markers with long core repeat optimized for grape (Vitis spp.) genotyping. BMC Plant Biol 8:127PubMedPubMedCentralCrossRefGoogle Scholar
  14. Cipriani G, Spadotto A, Jurman I, Di Gaspero G, Crespan M, Meneghetti S, Frare E, Vignani R, Cresti M, Morgante M, Pezzotti M, Pe E, Policriti A, Testolin R (2010) The SSR-based molecular proWle of 1005 grapevine (Vitis vinifera L) accessions uncovers new synonymy and parentages and reveals a large admixture amongst varieties of diVerent geographic origin. Theor Appl Genet 121:1569–1585PubMedCrossRefGoogle Scholar
  15. Crespan M (2010) Exploration and evaluation of grapevine biodiversity using molecular markers. Mittellungen Klosterneuberg 60:310–315Google Scholar
  16. Crespan M, Milani N (2001) The Muscats a molecular analysis of synonyms homonyms and genetic relationships within a large family of grapevine cultivars. Vitis 40:23–30Google Scholar
  17. Davidis OX (1977) Evidence of Ampelography Athens Greece (in Greek)Google Scholar
  18. Doulati-Baneh H, Mohammad SA, Labrad M (2013) Genetic structure and diversity analysis in Vitis vinifera L cultivars from Iran using SSR markers. Sci Hortic 160:29–36CrossRefGoogle Scholar
  19. Earl DA, Von Holdt BM (2012) STRUCTUREHARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method Conservation. Genet Resour 4(2):336–359Google Scholar
  20. Emanuelli F, Lorenzi S, Grzeskowiak Catalano V, Stefanini M, Troggio M, Myles S, Martinez-Zapater JM, Zyprian E, Moreira FM, Grando MS (2013) Genetic diversity and population structure assessed by SSR and SNP markers in a large germplasm collection of grape Francesco. BMC Plant Biol 13:39PubMedPubMedCentralCrossRefGoogle Scholar
  21. Ergül A, Perez-Rivera G, Söylemezoğlu G, Kazan K, Arroyo-Garcia R (2011) Genetic diversity in Anatolian wild grapes (Vitis vinifera subsp. sylvestris) estimated by SSR markers. Plant Genet Resour C 9(3):375–383CrossRefGoogle Scholar
  22. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620PubMedPubMedCentralCrossRefGoogle Scholar
  23. Eyduran SP, Ercisli S, Akin M, Eyduran E (2015) Genetic characterization of autochthonous grapevine cultivars from Eastern Turkey by simple sequence repeats (SSRs). Biotechnol Biotechnol Equip 30:26–31CrossRefGoogle Scholar
  24. Falush D, Stephens M, Pritchard JK (2003) Inference of population Structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164(4):1567–1587PubMedPubMedCentralGoogle Scholar
  25. Fatahi R, Ebadi A, Bassil N, Mehlenbacher SA, Zamani Z (2003) Characterization of Iranian grapevine cultivars using microsatellite markers. Vitis 42(4):185–192Google Scholar
  26. Francis RM (2016) POPHELPER: An R package and web app to analyze and visualize population structure. Mol Ecol Resour. CrossRefPubMedGoogle Scholar
  27. Frare E, Costacurta A, Giannetto S, Meneghetti S, Crespan M (2010) Identification of Armenian and Georgian Vitis spp. cultivars by SSR markers and molecular relationships with European grapevines Office International de la Vigne et du Vin (OIV) Bulletin de l'OIV Vol83 No956/957/958 : 475–484 ref13Google Scholar
  28. Halász G, Veres A, Kozma P, Kiss E, Balogh A, Galli Z, Szőke A, Hoffmann S, Heszky I (2005) Microsatellite fingerprinting of grapevine (Vitis vinifera L) varieties of the Carpathian Basin. Vitis 44(4):173–180Google Scholar
  29. Hellenic Republic, General Secretarial for Media and Communication (2019)
  30. Kalinowski ST, Taper ML, Marshall TC (2007) Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Mol Ecol 16(5):1099–1106PubMedCrossRefGoogle Scholar
  31. Karatas H, Değirmenci D, Velasco R, Vezzulli S, Bodur C, Agaoglu YS (2007) Microsatellite fingerprinting of homonymous grapevine ( Vitis vinifera L) varieties in neighboring regions of southeast Turkey. Sci Hortic 114:164–169CrossRefGoogle Scholar
  32. Krimbas V (1943) Greek Ampelography vol I Ministry of Agriculture Athens Greece (in Greek)Google Scholar
  33. Kumar S, Stecher G, Tamura K (2015) MEGA7: Molecular Evolutionary Genetics Analysis version 70 for bigger datasets. Mol Biol Evol 33(7):1870–1874CrossRefGoogle Scholar
  34. Ladoukakis ED, Lefort F, Sotiri P, Bacu A, Kongjika E, Roubelakis-Angelakis KA (2005) Genetic characterization of Albanian grapevine cultivars by microsatellite markers. J Int Sci Vigne Vin 39(3):109–119Google Scholar
  35. Laiadi Z, Bentchikou M, Bravo G, Cabello F, Martínez-zapater JM (2009) Molecular identification and genetic relationships of Algerian grapevine cultivars maintained at the germplasm collection of Skikda (Algeria). Vitis 48(1):25–32Google Scholar
  36. Laucou V, Lacombe T, Dechesne F, Siret R, Bruno J-B, Dessup M, Dessup T, Ortigosa P, Parra P, Roux C, Santoni S, Varès D, Péros J-P, Boursiquot J-M, This P (2011) High throughput analysis of grape genetic diversity as a tool for germplasm collection management. Theor Appl Genet 122:1233–1245PubMedCrossRefPubMedCentralGoogle Scholar
  37. Lefort F, Roubelakis-Aggelakis K (2000) The Greek Vitis Database: a multimedia web-backed genetic database for germplasm management of Vitis resources in Greece. J Wine Res 11(3):233–242CrossRefGoogle Scholar
  38. Lefort F, Roubelakis-Aggelakis K (2001) Genetic comparison of Greek cultivars of Vitis vinifera L by nuclear microsatellite profiling. Am J Enol Vitis 52:2Google Scholar
  39. Lefort F, Roubelakis-Aggelakis K (2002) Assessing the identity of grapevine plants from vineyards from Crete and Samos by microsatellite profiling. J Int Sci Vigne Vin 36(4):177–183Google Scholar
  40. Lefort F, Kyvelos CJ, Zervou M, Edwards KJ, Roubelakis-Angelakis KA (2002) Characterization of new microsatellite loci from Vitis vinifera and their conservation in some Vitis species and hybrids. Mol Ecol Notes 2:20–21CrossRefGoogle Scholar
  41. Levadoux L (1956) Les populations sauvages et cultive´es de Vitis vinifera L. Annales d’Amelioration des Plantes 1:59–118Google Scholar
  42. Logothetis BX (1975) Contributions de la vigne et du vin à la civilisation de laGrèce et de la Méditerranée orientale Annuaire de la Faculté Agronomique del’Université de Thessaloniki: 1–286 (in Greek)Google Scholar
  43. Marangou A (1991) Le vin et les amphores de Crète: de l’époque classique à l’époque impériale [The wine and the amphores of Crete: From the classic era to the imperial era; in French] Ecole Francaise d’Athènes AthensGoogle Scholar
  44. McGovern PE (2003) Ancient wine: the search for the origins of viniculture. Princeton University Press, PrincetonGoogle Scholar
  45. McGovern PE, Fleming SJ, Katz SH (1995) The origins and ancient history of wine. Gordon & Breach, AmsterdamGoogle Scholar
  46. McGovern PE, Glusker DL, Lawrence JE, Voigt MM (1996) Neolithic resinated wine. Nature 381:480–481CrossRefGoogle Scholar
  47. Merkouropoulos G, Michailidou S, Alifragkis A, Zioziou E, Koundouras S, Argiriou A, Nikolaou N (2015) A combined approach involving ampelographic description berry oenological Traits and molecular analysis to study native grapevine varieties of Greece. Vitis 54(Special Issue):99–103Google Scholar
  48. Merkouropoulos G, Ganopoulos I, Doulis A, Nikolaou N, Mylona P (2016) High Resolution Melting (HRM) analysis on VviDXS to reveal muscats or non-muscats among autochthonous Greek wine producing grape varieties. OENO One 50(3):161–167CrossRefGoogle Scholar
  49. Moreno-sanz P, Suárez B, Loureiro MD (2008) Identification of synonyms and homonyms in grapevine cultivars (Vitis vinifera L) from Asturias (Spain). J Hortic Sci Biotechnol 83(6):683–688CrossRefGoogle Scholar
  50. Myles S, Boyko AR, Owens CL, Brown PJ, Grassi F, Aradhya MK, Prins B, Reynolds A, Chia JM, Ware D, Bustamante CD, Buckler ES (2011) Genetic Structure and domestication history of the grape. Proc Natl Acad Sci USA 108(9):3457–3458CrossRefGoogle Scholar
  51. Negrul AM (1938) Evolution of cultivated forms of grapes. Comptes Rendus (Doklady) Acade´mie Sciences USSR 18:585–588Google Scholar
  52. OIV (2009) OIV Descriptor List for Grape Varieties and Vitis Species 2nd ed Organisation Internationale de la Vigne et du Vin. https://www.oivint/oiv/info/enplubicationoiv. Accesse May 2018
  53. Olmo HP (1995) The origin and domestication of the Vinifera grape. In: McGovern PE, Fleming SJ, Katz SH (eds) The origins and ancient history of wine. Gordon and Breach Science Publishers, Amsterdam, pp 31–43Google Scholar
  54. Peakall R, Smouse PE (2006) GenAlEx 6: genetic analysis in excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295CrossRefGoogle Scholar
  55. Pritchard JK, Falush D (2007) Documentation for Structure Software: Version 22. University of Chicago, ChicagoGoogle Scholar
  56. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155(2):945–959PubMedPubMedCentralGoogle Scholar
  57. Robinson J, Harding J, Vouillamoz J (2012) Wine Grapes—A complete guide to 1368 vine varieties including their origins and flavours. Allen Lane, Northwood, pp 678–696Google Scholar
  58. Roubelakis-Angelakis KA (1998) Viticulture in Crete Problems and Prospective Publisher GEOTEE Division of Crete (in Greek)Google Scholar
  59. Scott KD, Eggler P, Seaton G, Rosseto M, Abblet EM, Lee LS, Henry RJ (2000) Analysis of SSRs derived from grape ESTs. Theor Appl Genet 100:723–726CrossRefGoogle Scholar
  60. Sefc KM, Regner F, Glossl J, Steinkellner H (1998) Genotyping of grapevine and rootstock cultivars using microsatellite markers. Vitis 37:15–20Google Scholar
  61. Sefc KM, Regner F, Turetschek E, Gloessl J, Steinkellner H (1999) Identification of microsatellite sequences in Vitis riparia and their applicability for genotyping of different Vitis species. Genome 42:367–373PubMedPubMedCentralCrossRefGoogle Scholar
  62. Sefc KM, Lopes MS, Lefort F, Botta R, Roubelakis-Angelakis KA, Ibanez J, Pejic I, Wagner HW, Glossl J, Steinkellner H (2000) Microsatellite variability in grapevine cultivars from different European regions and evaluation of assignment testing to assess the geographic origin of cultivars. Theor Appl Genet 100:498–505CrossRefGoogle Scholar
  63. Stajner N, Tomić L, Ivanisević D, Korać N, Cvetković-Jovanović T, Beleski K, Angleova E, Maraš V, Javornik B (2013) Microsatellite inferred genetic diversity and Structure of Western Balkan grapevines (Vitis vinifera L). Tree Genet Genomes 10:127–140CrossRefGoogle Scholar
  64. Stavrakaki M, Biniari K (2016) Genotyping and phenotyping of twenty old traditional Greek grapevine varieties (Vitis vinifera L) from Eastern and Western Greece. Sci Hortic 209:86–95CrossRefGoogle Scholar
  65. Stavrakaki M and Stavrakakis M (2017). The Cretan Grapes, Publisher TropiGoogle Scholar
  66. Stavrakakis MN (2010) Ampelografy (in Greek) Publisher TropiGoogle Scholar
  67. Stavrakakis MN, Biniari K (2005) Genetic study of grape cultivars used for the production of Malvasia wine by RAPD’s Mediterranean Malvasias. In: International Scientific Conference Porec Croatia: 19–21Google Scholar
  68. Stavrakakis MN, Biniari K, Hatzopoulos P (1997) Identification and discrimination of eight greek grape cultivars (Vitis vinifera L) by random amplified polymorphic DNA markers. Vitis 36(4):175–178Google Scholar
  69. Stavrakas D (2015) Ampelografy (in Greek), 2nd edn. Ziti, ThessalonikiGoogle Scholar
  70. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 40. Mol Biol Evol 24(8):1596–1599PubMedCrossRefGoogle Scholar
  71. This P, Jung A, Boccacci P, Borrego J, Botta R, Costantini L, Crespan M, Dangl GS, Eisenheld C, Ferreira-Monteiro F, Grando S, Ibáñez J, Lacombe T, Laucou V, Magalhaes R, Meredith CP, Milani N, Peterlunger E, Regner F, Zullini L, Maul E (2004) Development of a standard set of microsatellite reference alleles for identification of grape cultivars. Theor Appl Genet 109(7):1448–1458PubMedCrossRefGoogle Scholar
  72. Thomas MR, Scott NS (1993) Microsatellite repeats in grapevine reveal DNA polymorphisms when analysed as sequence-tagged sites (STSs). Theor Appl Genet 86:985–990PubMedCrossRefGoogle Scholar
  73. Trosphin L, Milovanov Α, Zviagin Α (2015) Molecular marker screening of new promising wine grape clones. Vitis 54(Special Issue):105–106Google Scholar
  74. Valamoti SM (2011) Flax in Neolithic and Bronze Age Greece: Archaeobotanical evidence. Veget Hist Archaeobot 20:549–560CrossRefGoogle Scholar
  75. Vavilov NI (1926) Studies on the Origin of Cultivated Plants. Institute of Applied Botanical Plant Breeding, LeningradGoogle Scholar
  76. Vitis International Variety Catalogue (VIVC) (2018) Julius Kühn-Institut - Federal Research Centre for Cultivated Plants (JKI) Institute for Grapevine Breeding - Geilweilerhof (ZR) Last modified: May 2018Google Scholar
  77. Vouillamoz JF, Mc Govern PE, Ergul A, Söylemezoğlu G, Tevzadze G, Meredith CP, Grando MS (2006) Genetic characterization and relationships of traditional grape cultivars from Transcaucasia and Anatolia. Plant Genet Resour 4(2):144–158CrossRefGoogle Scholar
  78. Weir BS, Cockerham C (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370PubMedGoogle Scholar
  79. Zohary D, Hopf M (2000) Domestication of plants in the Old World. Oxford University Press, New YorkGoogle Scholar
  80. Zulini L, Russo M, Peterlunger E (2002) Genotyping wine and table grape cultivars from Apulia (Southern Italy) using microsatellite markers. Vitis 41(4):183–187Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Androniki C. Bibi
    • 1
    Email author
  • Evangelos D. Gonias
    • 1
  • Andreas G. Doulis
    • 1
  1. 1.Laboratory of Plant Biotechnology, Hellenic Agricultural Organization DEMETER (Ex. NAGREF)Institute of Olive Tree, Sub-Tropical Crops and ViticultureHeraklionGreece

Personalised recommendations