Advertisement

Discovery and Utilization of EST-SSR Marker Resource for Genetic Diversity and Population Structure Analyses of a Subtropical Bamboo, Dendrocalamus hamiltonii

  • Abhishek Bhandawat
  • Vikas Sharma
  • Pradeep Singh
  • Romit Seth
  • Akshay Nag
  • Jagdeep Kaur
  • Ram Kumar SharmaEmail author
Original Article
  • 85 Downloads

Abstract

Dendrocalamus hamiltonii is a giant bamboo species native to Indian subcontinent with high economic importance. Nevertheless, highly outcross nature and flowering once in decades impose severe limitation in its propagation. Identification and mixed cultivation of genetically diverse genotypes may assist successful breeding and natural recombination of desirable traits. Characterization of existing genetic diversity and population structure are indispensable for efficient implementation of such strategies, which is facing a major challenge due to non-availability of sequence-based markers for the species. In this study, 8121 EST-SSR markers were mined from D. hamiltonii transcriptome data. Among all, tri-repeats were most represented (52%), with the abundance of CCG/CGG repeat motif. A set of 114 polymorphic markers encompassing epigenetic regulators, transcription factors, cell cycle regulators, signaling, and cell wall biogenesis, detected polymorphism and interaction (in silico) with important genes, that might have role in bamboo growth and development. Genetic diversity and population structure of the three D. hamiltonii populations (72 individuals) revealed moderate to high-level genetic diversity (mean alleles per locus: 5.8; mean PIC: 0.44) using neutral EST-SSR markers. AMOVA analysis suggests maximum diversity (59%) exists within population. High genetic differentiation (Gst = 0.338) and low gene flow (Nm = 0.49) were evident among populations. Further, PCoA, dendrogram, and Bayesian STRUCTURE analysis clustered three populations into two major groups based on geographical separations. In future, SSR marker resources created can be used for systematic breeding and implementation of conservation plans for sustainable utilization of bamboo complex.

Keywords

Bamboo genetic diversity microsatellite population structure SSR transcriptome 

Notes

Acknowledgements

We acknowledge funding from CSIR research Grant MLP071. This is IHBT communication No. 4126.

Author contribution

AB, RKS: Conceived and designed the experiments; AB, V.S., RS: Performed the experiments; AB, AN, PS, RS: Analyzed the data; AB, RKS: wrote the paper; JK: Helped in data interpretations; RKS: Editing and approval of final version of manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10528_2019_9914_MOESM1_ESM.tif (2 mb)
Fig. S1 Classification of Simple Sequence Repeats (SSRs) derived from D. hamiltonii transcriptome. Supplementary file1 (TIFF 2007 kb)
10528_2019_9914_MOESM2_ESM.tif (1.5 mb)
Fig. S2 Kyoto Encyclopedia of Gene and Genomes (KEGG) classification of SSR transcripts under four major categories A: cellular process, B: Environmental Information Processing, C: Genetic Information Processing and D: Metabolism. Supplementary file2 (DOCX 1565 kb)
10528_2019_9914_MOESM3_ESM.tif (1.3 mb)
Fig. S3 Eukaryotic Cluster of Orthologous Groups (KOG) classification of SSR transcripts. Supplementary file3 (DOCX 1361 kb)
10528_2019_9914_MOESM4_ESM.tif (1.4 mb)
Fig. S4 Gene ontology classification of SSR containing transcripts in D. hamiltonii. Supplementary file4 (TIFF 1392 kb)
10528_2019_9914_MOESM5_ESM.tif (263 kb)
Fig. S5 Gene ontology enrichment of SSR transcripts under biological process category. Supplementary file5 (TIFF 263 kb)
10528_2019_9914_MOESM6_ESM.tif (156 kb)
Fig. S6 Gene ontology enrichment of SSR transcripts under molecular function category. Supplementary file6 (TIFF 156 kb)
10528_2019_9914_MOESM7_ESM.tif (256 kb)
Fig. S7 Gene ontology enrichment of SSR transcripts under cellular component category. Supplementary file7 (TIFF 256 kb)
10528_2019_9914_MOESM8_ESM.tif (14.1 mb)
Fig. S8 BayeScan 2.0 plot of 231 alleles representing 40 SSR locus across 72 individuals from 3 populations from India. FST is plotted against the log10 of the posterior odds (PO). The vertical line shows the critical PO used for identifying outlier markers. Two markers on the right side of the vertical line are candidates for being under positive selection. Supplementary file8 (TIFF 14487 kb)
10528_2019_9914_MOESM9_ESM.tif (803 kb)
Fig. S9 Multiple sequence alignment of allelic variants of SSR locus: (a) DHTMS-45878; GAG-repeat, (b) DHTMS-1233; TCA-repeat, (c) DHTMS-22356; CTT-repeat. Region highlighted in green represents SSR locus, while dark region represents indels/point mutations. Supplementary file9 (TIFF 803 kb)
10528_2019_9914_MOESM10_ESM.tif (607 kb)
Fig. S10 In silico mapping of D. hamiltonii SSR locus on Supplementary file10 (TIFF 608 kb)
10528_2019_9914_MOESM11_ESM.docx (26 kb)
Table S1 Supplementary file11 (DOCX 25 kb)
10528_2019_9914_MOESM12_ESM.xls (4 mb)
Table S2 Supplementary file12 (XLS 4124 kb)
10528_2019_9914_MOESM13_ESM.xls (30 kb)
Table S3 Supplementary file13 (XLS 30 kb)
10528_2019_9914_MOESM14_ESM.xls (485 kb)
Table S4 Supplementary file14 (XLS 485 kb)
10528_2019_9914_MOESM15_ESM.xls (92 kb)
Table S5 Supplementary file15 (XLS 92 kb)

References

  1. Abdelkrim J, Robertson BC, Stanton J-AL, Gemmell NJ (2009) Fast, cost-effective development of species-specific microsatellite markers by genomic sequencing. Biotechniques 46:185CrossRefGoogle Scholar
  2. Ambreen H, Kumar S, Variath MT, et al (2015) Development of genomic microsatellite markers in Carthamus tinctorius L.(safflower) using next generation sequencing and assessment of their cross-species transferability and utility for diversity analysis. PLoS ONE 10:e0135443Google Scholar
  3. Anderson JA, Churchill GA, Autrique JE, et al (1993) Optimizing parental selection for genetic linkage maps. Genome 36:181–186Google Scholar
  4. Bhandawat A, Sharma V, Sharma H et al (2013) Development and crosstransferability of functionally relevant microsatellite markers in Dendrocalamus latiflorus and related bamboo species. TC 5:5Google Scholar
  5. Bhandawat A, Singh G, Raina AS et al (2016) Development of genic SSR marker resource from RNA-Seq data in Dendrocalamus latiflorus. J Plant Biochem Biotechnol 25:179–190CrossRefGoogle Scholar
  6. Bhandawat A, Singh G, Seth R et al (2017) Genome-wide transcriptional profiling to elucidate key candidates involved in bud burst and rattling growth in a subtropical bamboo (Dendrocalamus hamiltonii). Front Plant Sci 7:2038CrossRefGoogle Scholar
  7. Bhatt BP, Singha LB, Singh K, Sachan MS (2003) Some commercial edible bamboo species of North East India: production, indigenous uses, cost-benefit and management strategies. Bamboo Sci Cult 17:4–20Google Scholar
  8. Bystriakova N, Kapos V, Lysenko I, Stapleton CMA (2003) Distribution and conservation status of forest bamboo biodiversity in the Asia-Pacific Region. Biodivers Conserv 12:1833–1841CrossRefGoogle Scholar
  9. Das P, Rout GR (1994) Analysis of current methods and approaches on the micropropagation of bamboo. Proc Natl Acad Sci India Sect B 64:235Google Scholar
  10. Doyle JJ, Doyle JL (1990) Isolation of DNA from small amounts of plant tissues. BRL Focus 12:13–15Google Scholar
  11. Earl DA (2012) Structure Harvester: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 4:359–361CrossRefGoogle Scholar
  12. Epplen C, Melmer G, Siedlaczck I et al (1993) On the essence of “meaningless” simple repetitive DNA in eukaryote genomes. In: Pena SDJ, Chakraborty R, Epplen JT, Jeffreys AJ (eds) DNA fingerprinting: state of the Science. Springer, Dordrecht, pp 29–45CrossRefGoogle Scholar
  13. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software structure: a simulation study. Mol Ecol 14:2611–2620CrossRefGoogle Scholar
  14. Falush D, Stephens M, Pritchard JK (2007) Inference of population structure using multilocus genotype data: dominant markers and null alleles. Mol Ecol Notes 7:574–578CrossRefGoogle Scholar
  15. Foll M, Gaggiotti O (2008) A genome-scan method to identify selected loci appropriate for both dominant and codominant markers: a Bayesian perspective. Genetics 180:977–993CrossRefGoogle Scholar
  16. Ghorai A, Sharma A (1980) Bambuseae—a review. Feddes Repert 91:281–299CrossRefGoogle Scholar
  17. Hancock JM, Simon M (2005) Simple sequence repeats in proteins and their significance for network evolution. Gene 345:113–118CrossRefGoogle Scholar
  18. He C, Cui K, Zhang J et al (2013) Next-generation sequencing-based mRNA and microRNA expression profiling analysis revealed pathways involved in the rapid growth of developing culms in Moso bamboo. BMC Plant Biol 13:119.  https://doi.org/10.1186/1471-2229-13-119 CrossRefGoogle Scholar
  19. Jakobsson M, Rosenberg NA (2007) CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 23:1801–1806CrossRefGoogle Scholar
  20. Janes JK, Miller JM, Dupuis JR et al (2017) The K = 2 conundrum. Mol Ecol 26(14):3594–3602CrossRefGoogle Scholar
  21. Lessard G, Chouinard A (1980) Bamboo research in Asia: proceedings of a workshop held in Singapore, 28–30 May 1980. In: Bamboo research in Asia: proceedings of a workshop held in Singapore, 28–30 May 1980. International Development Research Centre.Google Scholar
  22. Li Y, Korol AB, Fahima T et al (2002) Microsatellites: genomic distribution, putative functions and mutational mechanisms: a review. Mol Ecol 11:2453–2465CrossRefGoogle Scholar
  23. Li Y-C, Korol AB, Fahima T, Nevo E (2004) Microsatellites within genes: structure, function, and evolution. Mol Biol Evol 21:991–1007CrossRefGoogle Scholar
  24. Liu M, Qiao G, Jiang J et al (2012) Transcriptome sequencing and de novo analysis for ma bamboo (Dendrocalamus latiflorus Munro) using the Illumina platform. PLoS ONE 7:e46766CrossRefGoogle Scholar
  25. Liu T, Zhu S, Fu L, et al (2013) Development and characterization of 1827 expressed sequence tag-derived simple sequence repeat markers for ramie (Boehmeria nivea L. Gaud). PLoS ONE 8:e60346Google Scholar
  26. Loveless MD, Hamrick JL (1984) Ecological determinants of genetic structure in plant populations. Annu Rev Ecol Syst 15:65–95CrossRefGoogle Scholar
  27. Madlung A (2013) Polyploidy and its effect on evolutionary success: old questions revisited with new tools. Heredity (Edinb) 110:99–104CrossRefGoogle Scholar
  28. Manel S, Conord C, Després L (2009) Genome scan to assess the respective role of host-plant and environmental constraints on the adaptation of a widespread insect. BMC Evol Biol 9:288CrossRefGoogle Scholar
  29. Metzgar D, Bytof J, Wills C (2000) Selection against frameshift mutations limits microsatellite expansion in coding DNA. Genome Res 10:72–80Google Scholar
  30. Parida SK, Pandit A, Gaikwad K et al (2010) Functionally relevant microsatellites in sugarcane unigenes. BMC Plant Biol 10(1):2511CrossRefGoogle Scholar
  31. Parisod C, Joost S (2010) Divergent selection in trailing-versus leading-edge populations of Biscutella laevigata. Ann Bot 105:655–660CrossRefGoogle Scholar
  32. Patel RK, Jain M (2012) NGS QC Toolkit: a toolkit for quality control of next generation sequencing data. PLoS ONE 7:e30619CrossRefGoogle Scholar
  33. Peakall ROD, Smouse PE (2006) GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295CrossRefGoogle Scholar
  34. Perrier X, Jacquemoud-Collet JP (2006) DARwin software: dissimilarity analysis and representation for windows. https://darwin.cirad.fr/õ [accessed 1 March 2013]
  35. Pfeiffer T, Roschanski AM, Pannell JR et al (2011) Characterization of microsatellite loci and reliable genotyping in a polyploid plant, Mercurialis perennis (Euphorbiaceae). J Hered 102(4):479–488CrossRefGoogle Scholar
  36. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959Google Scholar
  37. Riechmann JL, Heard J, Martin G et al (2000) Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes. Science 290:2105–2110CrossRefGoogle Scholar
  38. Rosenberg NA (2004) DISTRUCT: a program for the graphical display of population structure. Mol Ecol Notes 4:137–138CrossRefGoogle Scholar
  39. Sampson JF, Byrne M (2012) Genetic diversity and multiple origins of polyploid Atriplex nummularia Lindl. (Chenopodiaceae). Biol J Linn Soc 105:218–230CrossRefGoogle Scholar
  40. Shukla U, Das D (1981) On the occurrence of some medicinal grasses in Eastern India. Indian J ForGoogle Scholar
  41. Slatkin M, Barton NH (1989) A comparison of three indirect methods for estimating average levels of gene flow. Evolution 43(7):1349–1368CrossRefGoogle Scholar
  42. Smoot ME, Ono K, Ruscheinski J et al (2011) Cytoscape 2.8: new features for data integration and network visualization. Bioinformatics 27:431–432CrossRefGoogle Scholar
  43. Tatusov RL, Fedorova ND, Jackson JD et al (2003) The COG database: an updated version includes eukaryotes. BMC Bioinform 4(1):41CrossRefGoogle Scholar
  44. Tautz D, Renz M (1984) Simple sequences are ubiquitous repetitive components of eukaryotic genomes. Nucleic Acids Res 12:4127–4138CrossRefGoogle Scholar
  45. te Beest M, Le Roux JJ, Richardson DM et al (2011) The more the better? The role of polyploidy in facilitating plant invasions. Ann Bot 109(1):19–45CrossRefGoogle Scholar
  46. Tewari DN (1992) A monograph on teak (Tectona grandis Linn. f.). International book distributorsGoogle Scholar
  47. Thiel T, Michalek W, Varshney R, Graner A (2003) Exploiting EST databases for the development and characterization of gene-derived SSR-markers in barley (Hordeum vulgare L.). Theor Appl Genet 106:411–422CrossRefGoogle Scholar
  48. Unamba CIN, Nag A, Sharma RK (2015) Next generation sequencing technologies: the doorway to the unexplored genomics of non-model plants. Front Plant Sci 6:1074CrossRefGoogle Scholar
  49. Varshney RK, Graner A, Sorrells ME (2005) Genic microsatellite markers in plants: features and applications. Trends Biotechnol 23:48–55CrossRefGoogle Scholar
  50. Xiao Y, Zhou L, Xia W et al (2014) Exploiting transcriptome data for the development and characterization of gene-based SSR markers related to cold tolerance in oil palm (Elaeis guineensis). BMC Plant Biol 14(1):384CrossRefGoogle Scholar
  51. Yang H-Q, An M-Y, Gu Z-J, Tian B (2012) Genetic diversity and differentiation of Dendrocalamus membranaceus (Poaceae: Bambusoideae), a declining bamboo species in Yunnan, China, as based on inter-simple sequence repeat (ISSR) analysis. Int J Mol Sci 13:4446–4457CrossRefGoogle Scholar
  52. Ye J, Fang L, Zheng H et al (2006) WEGO: a web tool for plotting GO annotations. Nucleic Acids Res 34:W293–W297CrossRefGoogle Scholar
  53. You FM, Huo N, Gu YQ et al (2008) BatchPrimer3: a high throughput web application for PCR and sequencing primer design. BMC Bioinform 9(1):253CrossRefGoogle Scholar
  54. Zalapa JE, Cuevas H, Zhu H et al (2012) Using next-generation sequencing approaches to isolate simple sequence repeat (SSR) loci in the plant sciences. Am J Bot 99:193–208CrossRefGoogle Scholar
  55. Zhang H, Zhuang S, Sun B, et al (2014). Estimation of biomass and carbon storage of moso bamboo (Phyllostachys pubescens Mazel ex Houz.) in southern China using a diameter–age bivariate distribution model. Forestry 87(5):674–82.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Molecular Genetics & Genomics Lab, Department of BiotechnologyCSIR-Institute of Himalayan Bioresource TechnologyPalampurIndia
  2. 2.Department of BiotechnologyPanjab UniversityChandigarhIndia
  3. 3.Sant Baba Bhag Singh UniversityJalandharIndia
  4. 4.Academy of Scientific and Innovative Research (AcSIR), CSIR-IHBTPalampurIndia

Personalised recommendations