Biochemical Genetics

, Volume 57, Issue 4, pp 583–605 | Cite as

Genetic Polymorphisms of CCDC26 rs891835, rs6470745, and rs55705857 in Glioma Risk: A Systematic Review and Meta-analysis

  • Thelma Beatriz González-Castro
  • Isela Esther Juárez-Rojop
  • María Lilia López-Narváez
  • Carlos Alfonso Tovilla-ZárateEmail author
  • Alma Delia Genis-MendozaEmail author
  • Nonazit Pérez-Hernández
  • José Jaime Martínez-Magaña
  • José Manuel Rodríguez-Pérez
Original Article


A genetic component is accepted in the etiology of the glioma. Evidence from candidate genes studies and GWAS reveal that CCDC26 gene could increase the risk of glioma. We performed a systematic review and up-to-date meta-analysis to explore if polymorphisms of CCDC26 gene (rs891835, rs6470745, and rs55705857) may be a susceptibility factor in developing glioma. An online search in PubMed, Web of Science, and SCOPUS up to September 2018 was performed. The pooled odds ratios were evaluated by fixed effects model and random effects model. Analyses of the overall sample and ethnic sub-groups were performed. In all the analyses, the allelic, additive, dominant, and recessive models were used. We found an association between all polymorphisms evaluated and an increased risk for glioma in the overall population in all the models studied. In sub-group analysis, we found that rs891835 and rs6470745 increased the risk of glioma in Europeans and Caucasians. On the other hand, the rs891835 polymorphism did not reveal any statistical association in Chinese population. Taken into consideration the limitations of this study, the present findings suggest a possible participation of rs891835, rs6470745, and rs55705857 as risk factors to develop glioma. Furthermore, it is possible that the involvement of CCDC26 variants depends on ethnicity. However, we recommend to perform further studies to have conclusive outcomes.


Meta-analysis Glioma CCDC26 Biomarkers 


Author contributions

T.B.G.C., C.A.T.Z., and A.D.G.M. performed substantial contributions to conception and design; J.J.M.M., T.B.G.C., and J.M.R.P. participated in acquisition of data, or analysis and interpretation of data; I.E.J.R., M.L.L.N., and N.P.H. drafted the article or revised it critically for important intellectual content; and all the authors gave their final approval of the version to be published.


This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Compliance with Ethical Standards

Conflict of interest

The authors declare no conflict of interest.


  1. Adel Fahmideh M et al (2015) CCDC26, CDKN2BAS, RTEL1 and TERT polymorphisms in pediatric brain tumor susceptibility. Carcinogenesis 36:876–882. CrossRefGoogle Scholar
  2. Barnholtz-Sloan JS, Maldonado JL, Williams VL, Curry WT, Rodkey EA, Barker FG 2nd, Sloan AE (2007) Racial/ethnic differences in survival among elderly patients with a primary glioblastoma. J Neurooncol 85:171–180. CrossRefGoogle Scholar
  3. Chen H et al (2011) Association of sequence variants on chromosomes 20, 11, and 5 (20q13.33, 11q23.3, and 5p15.33) with glioma susceptibility in a Chinese population. Am J Epidemiol 173:915–922. CrossRefGoogle Scholar
  4. Cui T (2015) CCDC26 rs4295627 polymorphism and glioma risk: a meta-analysis. Int J Clin Exp Med 8:3862–3868Google Scholar
  5. Di Stefano AL et al (2013) Association between glioma susceptibility loci and tumour pathology defines specific molecular etiologies. Neuro Oncol 15:542–547. CrossRefGoogle Scholar
  6. Egan KM et al (2011) Cancer susceptibility variants and the risk of adult glioma in a US case–control study. J Neurooncol 104:535–542. CrossRefGoogle Scholar
  7. Egan KM, Wrensch MR, Jenkins RB (2012) Rare and uncommon genetic variants may hold key to the ‘missing heritability’ in glioma CNS. Oncol 1:109–112. Google Scholar
  8. Enciso-Mora V et al (2013) Deciphering the 8q24.21 association for glioma. Hum Mol Genet 22:2293–2302. CrossRefGoogle Scholar
  9. Ghasimi S, Wibom C, Dahlin AM, Brannstrom T, Golovleva I, Andersson U, Melin B (2016) Genetic risk variants in the CDKN2A/B, RTEL1 and EGFR genes are associated with somatic biomarkers in glioma. J Neurooncol 127:483–492. CrossRefGoogle Scholar
  10. Gonzalez-Castro TB, Hernandez-Diaz Y, Juarez-Rojop IE, Lopez-Narvaez ML, Tovilla-Zarate CA, Genis-Mendoza A, Alpuin-Reyes M (2016) The role of C957T, TaqI and Ser311Cys polymorphisms of the DRD2 gene in schizophrenia: systematic review and meta-analysis. Behav Brain Funct (BBF) 12:29. CrossRefGoogle Scholar
  11. Hernandez-Diaz Y et al (2016) Effects of paraoxonase 1 gene polymorphisms on heart diseases: systematic review and meta-analysis of 64 case–control studies. Medicine (Baltimore) 95:e5298. CrossRefGoogle Scholar
  12. Jenkins RB et al (2011) Distinct germ line polymorphisms underlie glioma morphologic heterogeneity. Cancer Genet 204:13–18. CrossRefGoogle Scholar
  13. Jenkins RB et al (2012) A low-frequency variant at 8q24.21 is strongly associated with risk of oligodendroglial tumors and astrocytomas with IDH1 or IDH2 mutation. Nat Genet 44:1122–1125. CrossRefGoogle Scholar
  14. Kinnersley B, Houlston RS, Bondy ML (2018) Genome-wide association studies in glioma. Cancer Epidemiol Biomarkers Prev 27:418–428. CrossRefGoogle Scholar
  15. Lachance DH et al (2011) Associations of high-grade glioma with glioma risk alleles and histories of allergy and smoking. Am J Epidemiol 174:574–581. CrossRefGoogle Scholar
  16. Lasho TL et al (2012) Differential distribution of CCDC26 glioma-risk alleles in myeloid malignancies with mutant IDH1 compared with their IDH2R140-mutated or IDH-unmutated counterparts. Leukemia 26:1406–1407. CrossRefGoogle Scholar
  17. Li S et al (2012) Polymorphisms of TREH, IL4R and CCDC26 genes associated with risk of glioma. Cancer Epidemiol 36:283–287. CrossRefGoogle Scholar
  18. Li M, Zhou Q, Tu C, Jiang Y (2013) A meta-analysis of an association between the XRCC1 polymorphisms and gliomas risk. J Neurooncol 111:221–228. CrossRefGoogle Scholar
  19. Liu Y et al (2010a) Polymorphisms of LIG4, BTBD2, HMGA2, and RTEL1 genes involved in the double-strand break repair pathway predict glioblastoma survival. J Clin Oncol 28:2467–2474. CrossRefGoogle Scholar
  20. Liu Y, Shete S, Hosking F, Robertson L, Houlston R, Bondy M (2010b) Genetic advances in glioma: susceptibility genes and networks. Curr Opin Genet Dev 20:239–244. CrossRefGoogle Scholar
  21. Liu Y, Shete S, Hosking FJ, Robertson LB, Bondy ML, Houlston RS (2010c) New insights into susceptibility to glioma. Arch Neurol 67:275–278. CrossRefGoogle Scholar
  22. Lu HW, Huang M, Wang JH, Sun XL, Ke YQ (2015) CCDC26 rs4295627 polymorphism (8q24.21) and glioma risk: a meta-analysis. Genet Mol Res 14:12074–12084. CrossRefGoogle Scholar
  23. Melin B (2011) Genetic causes of glioma: new leads in the labyrinth. Curr Opin Oncol 23:643–647. CrossRefGoogle Scholar
  24. Melin BS et al (2017) Genome-wide association study of glioma subtypes identifies specific differences in genetic susceptibility to glioblastoma and non-glioblastoma tumors. Nat Genet 49:789–794. CrossRefGoogle Scholar
  25. Oktay Y et al (2016) IDH-mutant glioma specific association of rs55705857 located at 8q24.21 involves MYC deregulation. Sci Rep 6:27569. CrossRefGoogle Scholar
  26. Ostrom QT et al (2018) Sex-specific glioma genome-wide association study identifies new risk locus at 3p21.31 in females, and finds sex-differences in risk at 8q24.21. Sci Rep 8:7352. CrossRefGoogle Scholar
  27. Pop S, Enciu AM, Necula LG, Tanase C (2018) Long non-coding RNAs in brain tumours: focus on recent epigenetic findings in glioma. J Cell Mol Med. Google Scholar
  28. Rajaraman P et al (2012) Genome-wide association study of glioma and meta-analysis. Hum Genet 131:1877–1888. CrossRefGoogle Scholar
  29. Richardson TE et al (2017) Rapid progression to glioblastoma in a subset of IDH-mutated astrocytomas: a genome-wide analysis. J Neurooncol 133:183–192. CrossRefGoogle Scholar
  30. Schoemaker MJ et al (2010) Interaction between 5 genetic variants and allergy in glioma risk. Am J Epidemiol 171:1165–1173. CrossRefGoogle Scholar
  31. Shabihkhani M et al (2017) Incidence, survival, pathology, and genetics of adult Latino Americans with glioblastoma. J Neurooncol 132:351–358. CrossRefGoogle Scholar
  32. Shete S et al (2009) Genome-wide association study identifies five susceptibility loci for glioma. Nat Genet 41:899–904. CrossRefGoogle Scholar
  33. Simon M et al (2010) Genetic risk profiles identify different molecular etiologies for glioma. Clin Cancer Res 16:5252–5259. CrossRefGoogle Scholar
  34. Vaubel RA et al (2017) Synchronous gemistocytic astrocytoma IDH-mutant and oligodendroglioma IDH-mutant and 1p/19q-codeleted in a patient with CCDC26 polymorphism. Acta Neuropathol 134:317–319. CrossRefGoogle Scholar
  35. Walsh KM et al (2013a) Analysis of 60 reported glioma risk SNPs replicates published GWAS findings but fails to replicate associations from published candidate-gene studies. Genet Epidemiol 37:222–228. CrossRefGoogle Scholar
  36. Walsh KM et al (2013b) Genetic variants in telomerase-related genes are associated with an older age at diagnosis in glioma patients: evidence for distinct pathways of gliomagenesis. Neuro Oncol 15:1041–1047. CrossRefGoogle Scholar
  37. Wang SS et al (2011) Joint associations between genetic variants and reproductive factors in glioma risk among women. Am J Epidemiol 174:901–908. CrossRefGoogle Scholar
  38. Wang X, Luo T, Ruan M, Liu P, Wang S, Zhu W (2016) Association of the CCDC26 rs4295627 polymorphism with the risk of glioma: evidence from 7,290 cases and 11,630 controls. Mol Clin Oncol 4:878–882. CrossRefGoogle Scholar
  39. Wang S, Hui Y, Li X, Jia Q (2018) Silencing of lncRNA CCDC26 restrains the growth and migration of glioma cells in vitro and in vivo via targeting miR-203. Oncol Res 26:1143–1154. CrossRefGoogle Scholar
  40. Wei XB et al (2014) CCDC26 gene polymorphism and glioblastoma risk in the Han Chinese population. Asian Pac J Cancer Prev 15:3629–3633CrossRefGoogle Scholar
  41. Wibom C et al (2015) Investigation of established genetic risk variants for glioma in prediagnostic samples from a population-based nested case–control study. Cancer Epidemiol Biomarkers Prev 24:810–816. CrossRefGoogle Scholar
  42. Wu Q, Peng Y, Zhao X (2016) An updated and comprehensive meta-analysis of association between seven hot loci polymorphisms from eight GWAS and glioma risk. Mol Neurobiol 53:4397–4405. CrossRefGoogle Scholar
  43. Zeng J, Luo Y, Yu M, Li J, Liu Z (2017) CCDC26 rs4295627 polymorphisms associated with an increased risk of glioma: a meta-analysis. Adv Clin Exp Med 26:1275–1281CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Thelma Beatriz González-Castro
    • 1
    • 2
  • Isela Esther Juárez-Rojop
    • 2
  • María Lilia López-Narváez
    • 3
  • Carlos Alfonso Tovilla-Zárate
    • 4
    Email author
  • Alma Delia Genis-Mendoza
    • 5
    Email author
  • Nonazit Pérez-Hernández
    • 6
  • José Jaime Martínez-Magaña
    • 5
  • José Manuel Rodríguez-Pérez
    • 6
  1. 1.División Académica Multidisciplinaria de Jalpa de MéndezUniversidad Juárez Autónoma de TabascoJalpa de MéndezMexico
  2. 2.División Académica de Ciencias de la SaludUniversidad Juárez Autónoma de TabascoVillahermosaMexico
  3. 3.Hospital General de Yajalón “Dr. Manuel Velazco Suarez”, Secretaría de SaludYajalónMexico
  4. 4.División Multidisciplinaria de ComalcalcoUniversidad Juárez Autónoma de TabascoComalcalcoMexico
  5. 5.Instituto Nacional de Medicina Genómica (INMEGEN), Servicios de Atención Psiquiátrica (SAP), Secretaría de SaludCiudad de MéxicoMexico
  6. 6.Departamento de Biología MolecularInstituto Nacional de Cardiología Ignacio ChávezCiudad de MéxicoMexico

Personalised recommendations