Advertisement

Biochemical Genetics

, Volume 57, Issue 4, pp 571–582 | Cite as

Variant Ionotropic Receptors are Expressed in the Antennae of Anopheles sinensis (Diptera: Culicidae)

  • Jianyong Li
  • Qian Chen
  • Yahui Man
  • Di Pei
  • Wenjian WuEmail author
Original Article
  • 192 Downloads

Abstract

Mosquitoes transmit many harmful diseases that seriously threaten public health. The mosquito’s olfactory system is of great significance for host selection. Inotropic receptors (IRs) and olfactory receptors (ORs) have been demonstrated to be capable of odorant molecular recognition. Analyzing the molecular principles of mosquito olfaction facilitates the development of prevention and therapy techniques. Advances in the understanding of IRs have been seriously inadequate compared to those of ORs. Here, we provide evidence that 35 Anopheles sinensis IR (AsIR) genes are expressed, 7 of which are in the antennae and 2 have expression levels that are upregulated with a blood meal. A homologous analysis of the sequences showed that AsIRs are a subfamily of ionotropic glutamate receptors (iGLURs). This is the first that time IRs have been identified in Anopheles sinensis in vitro. The ultrastructure of the antennae supports the theory that diverse sensilla are distributed in the antennae. The results here may facilitate the revelation of the regulation mechanism in AsIRs, which could mitigate the transmission of diseases by mosquitoes.

Keywords

Anopheles sinensis Disease Ionotropic receptor Mosquito Olfactory system 

Notes

Acknowledgements

We thank the Center for Disease Control of Hunan Province (China) for their technical guidance and assistance. We thank the Institutional Review Board of National University of Defense Technology for the approval of all animal procedures.

Compliance with Ethical Standards

Conflict of interest

The authors declare no conflicts of interest.

Supplementary material

10528_2019_9910_MOESM1_ESM.xlsx (25 kb)
Supplementary file1 (XLSX 24 kb)
10528_2019_9910_MOESM2_ESM.xlsx (12 kb)
Supplementary file2 (XLSX 12 kb)
10528_2019_9910_MOESM3_ESM.xlsx (11 kb)
Supplementary file3 (XLSX 10 kb)

References

  1. Ab Majid AH, Dieng H, Ellias SS, Sabtu FS, Abd Rahim AH, Satho T (2018) Olfactory behavior and response of household ants (Hymenoptera) to different types of coffee odor: a coffee-based bait development prospect. J Asia-Pac Entomol 21:46–51.  https://doi.org/10.1016/j.aspen.2017.11.005 CrossRefGoogle Scholar
  2. Abuin L, Bargeton B, Ulbrich MH, Isacoff EY, Kellenberger S, Benton R (2011) Functional architecture of olfactory ionotropic glutamate receptors. Neuron 69:44–60CrossRefPubMedPubMedCentralGoogle Scholar
  3. Ahmed T, Zhang TT, Wang ZY, Kang-Lai HE, Bai SX (2016) Identification and expression pattern analysis of chemosensory receptor genes in the Macrocentrus cingulum (Hymenoptera: Braconidae) antennae. Eur J Entomol 113:76–83CrossRefGoogle Scholar
  4. Allan SA, Bernier UR, Kline DL (2014) laboratory evaluation of avian odors for mosquito (Diptera: Culicidae) attraction. J Med Entomol 43:225–231CrossRefGoogle Scholar
  5. Bengtsson JM, Trona F, Montagné N, Anfora G, Ignell R, Witzgall P, Jacquin-Joly E (2012) Putative chemosensory receptors of the codling moth, Cydia pomonella, identified by antennal transcriptome analysis. PLoS ONE 7:e31620CrossRefPubMedPubMedCentralGoogle Scholar
  6. Benton R, Vannice KS, Gomez-Diaz C, Vosshall LB (2009) Variant ionotropic glutamate receptors as chemosensory receptors in Drosophila. Cell 136:149–162.  https://doi.org/10.1016/j.cell.2008.12.001 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Bonizzoni M, Dunn WA, Campbell CL, Olson KE, Dimon MT, Marinotti O, James AA (2011) RNA-seq analyses of blood-induced changes in gene expression in the mosquito vector species Aedes aegypti. BMC Genomics 12:82.  https://doi.org/10.1186/1471-2164-12-82 CrossRefPubMedPubMedCentralGoogle Scholar
  8. Braks MA, Meijerink J, Takken W (2001) The response of the malaria mosquito, Anopheles gambiae, to two components of human sweat, ammonia and l -lactic acid, in an olfactometer. Physiol Entomol 26:142–148CrossRefGoogle Scholar
  9. Carey AF, Wang G, Su CY, Zwiebel LJ, Carlson JR (2010) Odorant reception in the malaria mosquito Anopheles gambiae. Nature 464:66CrossRefPubMedPubMedCentralGoogle Scholar
  10. Chang X et al (2014) Correction: multiple resistances and complex mechanisms of Anopheles sinensis mosquito: a major obstacle to mosquito-borne diseases control and elimination in China. PLoS Negl Trop Dis 8:e2889CrossRefPubMedPubMedCentralGoogle Scholar
  11. Chen Q, Man Y, Li J, Pei D, Wu W (2017) Olfactory ionotropic receptors in mosquito Aedes albopictus (Diptera: Culicidae). J Med Entomol.  https://doi.org/10.1093/jme/tjx063 CrossRefPubMedGoogle Scholar
  12. Choumet V et al (2012) Visualizing non infectious and infectious Anopheles gambiae blood feedings in naive and saliva-immunized mice. PLoS ONE 7:e50464.  https://doi.org/10.1371/journal.pone.0050464 CrossRefPubMedPubMedCentralGoogle Scholar
  13. Cook JI, Majeed S, Ignell R, Pickett JA, Birkett MA, Logan JG (2011) Enantiomeric selectivity in behavioural and electrophysiological responses of Aedes aegypti and Culex quinquefasciatus mosquitoes. Bull Entomol Res 101:541–550CrossRefGoogle Scholar
  14. Costantini C, Gibson G, Sagnon NF, Torre AD, Brady J, Coluzzi M (1996) Mosquito responses to carbon dioxide in B West African Sudan savanna village. Med Vet Entomol 10:220–227CrossRefPubMedGoogle Scholar
  15. Croset V et al (2010) Ancient protostome origin of chemosensory ionotropic glutamate receptors and the evolution of insect taste and olfaction. PLoS Genet 6:e1001064.  https://doi.org/10.1371/journal.pgen.1001064 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Dan Z et al (2014) Genome sequence of Anopheles sinensis provides insight into genetics basis of mosquito competence for malaria parasites. BMC Genomics 15:42CrossRefGoogle Scholar
  17. Dekker T, Geier M, Cardé RT (2005) Carbon dioxide instantly sensitizes female yellow fever mosquitoes to human skin odours. J Exp Biol 208:2963–2972CrossRefPubMedGoogle Scholar
  18. Fox AN, Pitts RJ, Robertson HM, Carlson JR, Zwiebel LJ (2001) Candidate odorant receptors from the malaria vector mosquito Anopheles gambiae and evidence of down-regulation in response to blood feeding. Proc Natl Acad Sci 98:14693–14697CrossRefPubMedGoogle Scholar
  19. Gingl E, Hinterwirth A, Tichy H (2005) Sensory representation of temperature in mosquito warm and cold cells. J Neurophysiol 94:176–185.  https://doi.org/10.1152/jn.01164.2004 CrossRefPubMedGoogle Scholar
  20. Groh KC, Vogel H, Stensmyr MC, Grosse-Wilde E, Hansson BS (2013) The hermit crab's nose-antennal transcriptomics. Front Neurosci 7:266PubMedGoogle Scholar
  21. Groh-Lunow KC, Getahun MN, Grosse-Wilde E, Hansson BS (2014) Expression of ionotropic receptors in terrestrial hermit crab's olfactory sensory neurons. Front Cell Neurosci 8:448PubMedGoogle Scholar
  22. Guo M, Krieger J, Großewilde E, Mißbach C, Zhang L, Breer H (2013) Variant ionotropic receptors are expressed in olfactory sensory neurons of Coeloconic Sensilla on the Antenna of the Desert Locust (Schistocerca gregaria). Int J Biol Sci 10:1–14CrossRefPubMedPubMedCentralGoogle Scholar
  23. Hempolchom C et al (2017) Scanning electron microscopy of antennal sensilla of the eight Anopheles species of the Hyrcanus Group (Diptera: Culicidae) in Thailand. Parasitol Res 116:143–153.  https://doi.org/10.1007/s00436-016-5270-4 CrossRefPubMedGoogle Scholar
  24. Jacquin-Joly E, Merlin C (2004) Insect olfactory receptors: contributions of molecular biology to chemical ecology. J Chem Ecol 30:2359–2397CrossRefPubMedGoogle Scholar
  25. Lee WJ et al (2007) Anopheles kleini, Anopheles pullus, and Anopheles sinensis: potential vectors of Plasmodium vivax in the Republic of Korea. J Med Entomol 44:1086–1090CrossRefPubMedGoogle Scholar
  26. Liu C, Pitts RJ, Bohbot JD, Jones PL, Wang G, Zwiebel LJ (2010) Distinct olfactory signaling mechanisms in the malaria vector mosquito Anopheles gambiae. PLoS Biol.  https://doi.org/10.1371/journal.pbio.1000467 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Lu T et al (2007) Odor coding in the maxillary palp of the malaria vector mosquito Anopheles gambiae. Curr Biol 17:1533–1544CrossRefPubMedPubMedCentralGoogle Scholar
  28. Pelosi P, Zhou JJ, Ban LP, Calvello M (2006) Soluble proteins in insect chemical communication. Cell Mol Life Sci 63:1658CrossRefPubMedGoogle Scholar
  29. Pitts RJ, Zwiebel LJ (2006) Antennal sensilla of two female anopheline sibling species with differing host ranges. Malar J 5:26.  https://doi.org/10.1186/1475-2875-5-26 CrossRefPubMedPubMedCentralGoogle Scholar
  30. Pitts RJ, Derryberry SL, Zhang Z, Zwiebel LJ (2017) Variant ionotropic receptors in the malaria vector mosquito Anopheles gambiae tuned to amines and carboxylic acids. Sci Rep 7:40297.  https://doi.org/10.1038/srep40297 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Ree HI (2005) Studies on Anopheles sinensis, the vector species of vivax malaria in Korea. Korean J Parasitol 43:75–92CrossRefPubMedPubMedCentralGoogle Scholar
  32. Rinker DC, Pitts RJ, Zhou X, Suh E, Rokas A, Zwiebel LJ (2013) Blood meal-induced changes to antennal transcriptome profiles reveal shifts in odor sensitivities in Anopheles gambiae. Proc Natl Acad Sci USA 110:8260–8265CrossRefPubMedGoogle Scholar
  33. Schymura D, Forstner M, Schultze A, Kröber T, Swevers L, Iatrou K, Krieger J (2010) Antennal expression pattern of two olfactory receptors and an odorant binding protein implicated in host odor detection by the malaria vector Anopheles gambiae. Int J Biol Sci 6:614–626CrossRefPubMedPubMedCentralGoogle Scholar
  34. Shui SZ, Fang H, Jian JW, Shao SZ, Yun PS, Lin HT (2010) Geographical, meteorological and vectorial factors related to malaria re-emergence in Huang-Huai River of central China. Malar J 9:337CrossRefGoogle Scholar
  35. Siju KP, Hill SR, Hansson BS, Ignell R (2010) Influence of blood meal on the responsiveness of olfactory receptor neurons in antennal sensilla trichodea of the yellow fever mosquito Aedes aegypti. J Insect Physiol 56:659CrossRefPubMedGoogle Scholar
  36. Silva L (2018) A brief history of biochemical genetics' 50 years and a reflection about past and present research directions. Biochem Genet 56:1–6.  https://doi.org/10.1007/s10528-018-9846-9 CrossRefPubMedGoogle Scholar
  37. Steinbrecht RA (1997) Pore structures in insect olfactory sensilla: a review of data and concepts. Int J Insect Morphol Embryol 26:229–245CrossRefGoogle Scholar
  38. Su CY, Menuz K, Carlson JR (2009) Olfactory perception: receptors, cells, and circuits. Cell 139:45–59CrossRefPubMedPubMedCentralGoogle Scholar
  39. Takken W (1991) The role of olfaction in host-seeking of mosquitoes: a review. Int J Trop Insect Sci 12:287–295CrossRefGoogle Scholar
  40. Takken W, Knols BG (1999) Odor-mediated behavior of afrotropical malaria mosquitoes. Annu Rev Entomol 44:131CrossRefPubMedGoogle Scholar
  41. Takken W, Dekker T, Wijnholds YG (1997) Odor-mediated flight behavior of Anopheles gambiae giles Sensu Stricto and An. stephensi liston in response to CO2, acetone, and 1-octen-3-ol (Diptera: Culicidae). J Insect Behav 10:395–407CrossRefGoogle Scholar
  42. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739.  https://doi.org/10.1093/molbev/msr121 CrossRefPubMedPubMedCentralGoogle Scholar
  43. Taparia T, Ignell R, Hill SR (2017) Blood meal induced regulation of the chemosensory gene repertoire in the southern house mosquito. BMC Genomics 18:393.  https://doi.org/10.1186/s12864-017-3779-2 CrossRefPubMedPubMedCentralGoogle Scholar
  44. Wang G et al (2009) Anopheles gambiae TRPA1 is a heat-activated channel expressed in thermosensitive sensilla of female antennae. Eur J Neurosci 30:967–974CrossRefPubMedPubMedCentralGoogle Scholar
  45. Wang G, Carey AF, Carlson JR, Zwiebel LJ (2010) Molecular basis of odor coding in the malaria vector mosquito Anopheles gambiae. Proc Natl Acad Sci USA 107:4418CrossRefPubMedGoogle Scholar
  46. Xia Y, Wang G, Buscariollo D, Pitts RJ, Wenger H, Zwiebel LJ (2008) The molecular and cellular basis of olfactory-driven behavior in Anopheles gambiae Larvae. Proc Natl Acad Sci USA 105:6433CrossRefPubMedGoogle Scholar
  47. Yao CA, Ignell R, Carlson JR (2005) Chemosensory coding by neurons in the coeloconic sensilla of the Drosophila antenna. J Neurosci 25:8359–8367CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Jianyong Li
    • 1
  • Qian Chen
    • 1
  • Yahui Man
    • 1
  • Di Pei
    • 1
  • Wenjian Wu
    • 1
    Email author
  1. 1.Department of Chemistry and BiologyNational University of Defense TechnologyChangshaChina

Personalised recommendations