Carbon Nanomaterials for the Creation of Biological Sensors for Socially Important Diseases

  • S. N. Shcherbin
  • I. A. KomarovEmail author
  • I. V. Chudnov
  • A. N. Kalinnikov
  • M. A. Orlov
  • E. E. Danelyan

In this article, the main directions in the development of carbon nanomaterial-based biological sensors for rapid analysis of socially significant blood diseases are considered. Carbon nanotubes, graphene, and derivative materials are shown to have potential for use in biosensors and are used to create various types of sensors.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Karyakin, A. A., et al., “Biosensors: Devices, classification, and functional characteristics,” Sensor, No. 1 (2002); http://www. Scholar
  2. 2.
    Byrne, B., Stack, E., Gilmartin N., et al., “Antibody-based sensors: principles, problems and potential for detection of pathogens and associated toxins,” Sensors, 9, 4407-4445 (2009).CrossRefGoogle Scholar
  3. 3.
    Sharma, S., Byrne, H., and O’Kennedy, R. J., “Antibodies and antibody_derived analytical biosensors,” Essays Biochem., 60, 9-18 (2016).CrossRefGoogle Scholar
  4. 4.
    Hye-Mi So, Keehoon Won, Yong Hwan Kim, et al., “Single-walled carbon nanotube biosensors using aptamers as molecular recognition elements,” J. Amer. Chem. Soc., 127, 11,906-11,907 (2005).Google Scholar
  5. 5.
    Nigam, V. K. and Shukla, P., “Enzyme based biosensors for detection of environmental pollutants. A review,” J. Microbiol. Biotechnol., 25, 1773-1781 (2015).CrossRefGoogle Scholar
  6. 6.
    Epstein, J. R., Biran, I., and Walt, D. R., “Fluorescence-based nucleic acid detection and microarrays,” Analytica Chimica Acta, 469, 3-36 (2002).CrossRefGoogle Scholar
  7. 7.
    Wenhu Zhou, Po-Jung Jimmy Huang, Jinsong Ding, et al., “Aptamer-based biosensors for biomedical diagnostics,” Analyst, 139, 2627-2640 (2014).Google Scholar
  8. 8.
    Jarczewska, M., Gorski, L., and Malinowska, E., “Electro-chemical aptamer-based biosensors as potential tools for clinical diagnostics,” Anal. Methods, 8, 3861-3877 (2016).CrossRefGoogle Scholar
  9. 9.
    Ellington, A. D., and Szostak, J. W., “In vitro selection of RNA molecules that bind specific ligands,” Nature, 346, 818-822 (1990).CrossRefGoogle Scholar
  10. 10.
    Tuerk, C. and Gold, L., “Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA poly-merase,” Science, 249, 505-510 (1990).CrossRefGoogle Scholar
  11. 11.
    Mishchenko, S. V. and Tkachev, A. G., Carbon Nanomaterials. Production, Properties, Use [in Russian], Mashinostroenie, Moscow (2008).Google Scholar
  12. 12.
    Nawaz, M. A., Rauf, S., Catanante, G., Nawaz, M. H., Nunes, G., Marty, J. L., and Hayat, A., “One step assembly of thin films of carbon nanotubes on screen printed interface for electrochemical aptasensing of breast cancer biomarker,” Sensors (Basel), 16, No. 10 (2016).Google Scholar
  13. 13.
    Heller, D. A., Jin, H., Martinez Brittany, M., et al., “Multimodal optical sensing and analyte specificity using single-walled carbon nanotubes,” Nature Nanotechnology, 4, 114-120 (2009).CrossRefGoogle Scholar
  14. 14.
    Brusnitsyn, D. V., Medyantseva, E. P., Varlamova, R. M., Maksimov, A. A., Fattakhova, A. N., and Budnikov, G. K., “Amperometric determination of antidepressants by monoamine oxidase biosensors based on carbon nanotubes and silver nanoparticles as modifiers,” Uch. Zapisk. Kazan. Univ., 156, Book 2, 37-50 (2014).Google Scholar
  15. 15.
    “Development of an aptasensor − a biosensor based on carbon nanotubes,” Nanotechnology News Network (2010).Google Scholar
  16. 16.
    Stepanov, A. V., Channeling of Low-Energy Atomic Particles in Carbon Nanotubes [in Russian], Dissertation for Master’s Degree in Physical and Mathematical Sciences, Cheboksary (2017).Google Scholar
  17. 17.
    Mayorov, A. S. et al., “Micrometer-scale ballistic transport in encapsulated graphene at room temperature,” Nano Lett., 11, 2396-2399 (2011).CrossRefGoogle Scholar
  18. 18.
    Lee, C., Wei, X. D., Kysar, J. W., and Hone, J., “Measurement of the elastic properties and intrinsic strength of monolayer graphene,” Science, 321, 385-388 (2008).CrossRefGoogle Scholar
  19. 19.
    Liu, F., Ming, P. M., and Li, J., “Ab initio calculation of ideal strength and phonon instability of graphene under tension,” Phys. Rev. B, 76, 064120 (2007).Google Scholar
  20. 20.
    Balandin, A. A., “Thermal properties of graphene and nanostructured carbon materials,” Nature Mater., 10, 569-581 (2011).CrossRefGoogle Scholar
  21. 21.
    The Graphene Boom: A summary [in Russian], http://www. Scholar
  22. 22.
    Review of the Graphene Market [in Russian], http://www. Scholar
  23. 23.
    Antony, J. and Grimme, S., “Structures and interaction energies of stacked graphene_nucleobase complexes,” Phys. Chem. Chem. Phys., 10, No. 19, 2722-2729 (2008).CrossRefGoogle Scholar
  24. 24.
    Gowtham, S., Scheicher, R. H., Ahuja R., et al., “Physisorption of nucleobases on graphene: Density-functional calculations,” Phys. Rev. B, 76, No. 3, 033401 (2007).Google Scholar
  25. 25.
    Palecek, E. and Fojta, M., Electrochemical DNA Sensors, Wiley-VCH Verlag GmbH and Co., Weinheim, Germany (2005), pp. 127-192.Google Scholar
  26. 26.
    Odenthal, K. J. and Gooding, J. J., “An introduction to electro-chemical DNA biosensors,” Analyst, 132, No. 7, 603-610 (2007).Google Scholar
  27. 27.
    Ghosh, I., Stains, C. I., Ooi, A. T., et al., “Direct detection of double-stranded DNA: Molecular methods and applications for DNA diagnostics,” Mol. Biosyst., 2, No. 11, 551-560 (2006).Google Scholar
  28. 28.
    Gooding, J. J., “Electrochemical DNA hybridization biosensors,” Electroanalysis, 14, No. 17, 1149-1156 (2002).CrossRefGoogle Scholar
  29. 29.
    Tao, Y., Lin, Y., Ren J., et al., “Self-assembled, functionalized graphene and DNA as a universal platform for colorimetric assays,” Biomaterials, 34, No. 20, 4810-4817 (2013).CrossRefGoogle Scholar
  30. 30.
    Singh, A., Sinsinbar, G., Choudhary M., et al., “Graphene oxide-chitosan nanocomposite based electrochemical DNA biosensor for detection of typhoid,” Sens. Actuators B: Chem., 185, 675-684 (2013).CrossRefGoogle Scholar
  31. 31.
    Chen, T. Y., Loan, P. T. K., Hsu, C. L., et al., “Label-free detection of DNA hybridization using transistors based on CVD grown graphene,” Biosens. Bioelectron., 41, 103-109 (2013).CrossRefGoogle Scholar
  32. 32.
    Velasco, J., Jr., Jing L., et al., “Transport spectroscopy of symmetry-broken insulating states in bilayer graphene,” Nature Nanotechnol., 7, 156-160 (2012).CrossRefGoogle Scholar
  33. 33.
    Lin, L., Liu, Y., Tang L., et al., “Electrochemical DNA sensor by the assembly of graphene and DNA-conjugated gold nanoparticles with silver enhancement strategy,” Analyst, 136, No. 22, 4732-4737 (2011).CrossRefGoogle Scholar
  34. 34.
    Stebunov, Y. V., Afteneva, O. A., Arsenin, A. V., and Volkov, V. S., “Highly sensitive and selective sensor chips with graphene-oxide linking layer,” ACS Applied Materials and Interfaces, DOI:
  35. 35.
    Wang, Y., Shao, Y., Matson, D. W., et al., “Nitrogen-doped graphene and its application in electrochemical biosensing,” ACS Nano, 4, No. 4, 1790-1798 (2010).CrossRefGoogle Scholar
  36. 36.
    Xu, C., Xu, B., Gu Y., et al., “Graphene-based electrodes for electrochemical energy storage,” Energy Environ. Sci., 6, No. 5, 1388-1414 (2013).CrossRefGoogle Scholar
  37. 37.
    Cao, S., Zhang, L., Chai Y., et al., “Electrochemistry of cholesterol biosensor based on a novel Pt-Pd bimetallic nanoparticle decorated graphene catalyst,” Talanta, 109, 167-172 (2013).CrossRefGoogle Scholar
  38. 38.
    Jia, X., Liu, Z., Liu N., et al., “A label-free immunosensor based on graphene nanocomposites for simultaneous multiplexed electrochemical determination of tumor markers,” Biosens. Bioelectron., 53, 160-166 (2014).CrossRefGoogle Scholar
  39. 39.
    Kovaleva, N. Yu., Raevskaya, E. G., and Roshchin, A. V., “Questions of the safety of nanomaterials: nanosafety, nanotoxi-cology, and nanoinformatics,” Khim. Bezopastn., 1, No. 2, 44-87 (2017).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • S. N. Shcherbin
    • 1
  • I. A. Komarov
    • 1
    Email author
  • I. V. Chudnov
    • 1
  • A. N. Kalinnikov
    • 1
  • M. A. Orlov
    • 1
  • E. E. Danelyan
    • 1
  1. 1.Bauman Moscow State Technical UniversityMoscowRussia

Personalised recommendations