Perspectives in the Development of Biosensors Based on AlGaN/GaN HEMT

  • A. G. GudkovEmail author
  • S. V. Agasieva
  • V. G. Tikhomirov
  • V. V. Zherdeva
  • D. V. Klinov
  • V. D. Shashurin

The development and investigation of biosensors for the early and rapid diagnosis of a wide spectrum of diseases to provide significant reductions in mortality and loss of working time as a result of timely treatment is a current challenge in many countries. The active progress in biosensor technology is promoted by the fact that it is an interdisciplinary field exploiting advancements in very diverse areas of knowledge: from physiology to nanotechnology and electronics.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Biomedical Nanostructures [Russian translation], Gonsalves, K. E., Halberstadt, C. R., Laurencin, C. T., and Nair, L. S. (eds.), Binom, Knowledge Laboratory, Moscow (2012).Google Scholar
  2. 2.
    Gudkov, A. G., Zherdeva, V. V., Tikhomirov, V. G., et al., “Current directions in biosensor diagnosis in vivo,” Nanotekhnol. Razrabot. Primen. XXI Vek, No. 2, 20-28 (2016).Google Scholar
  3. 3.
    Varfolomeev, S. D., Evdokimov, Yu. M., and Ostrovskii, M. A., “Sensor biology, sensory technology, and the creation of novel sensory organs in humans,” Vestn. Ross. Akad,. Nauk, 70, No. 2, 99-108 (2000).Google Scholar
  4. 4.
    Gudkov, A. G., Shashurin, V. D., Agasieva, S. V., et al., “Use of resonant tunneling nanodiodes to increase the effectiveness of electromagnetic energy converters in invasive biosensor systems based on radio-frequency identification technology,” Nanotekhnol. Razrabot. Primen. XXI Vek, No. 2, 15-20 (2014).Google Scholar
  5. 5.
    Agasieva, S. V., Zybin, A. A., Tikhomirov, V. G., et al., “The concept of biosensor construction based on HEMT,” Nanotekhnol. Razrabot. Primen. XXI Vek, 9, No. 2, 13-18 (2017).Google Scholar
  6. 6.
    Agasieva, S. V., V’yuginov, V. N., Tikhomirov, V. G., et al., “Increases in the stability of GaN HEMT to elevated temperature,” Nanotekhnol. Razrabot. Primen. XXI Vek, 9, No. 2, 19-21 (2017).Google Scholar
  7. 7.
    V’yuginov, V. N., Gudkov, A. G., Zybin, A. A., et al., “Selection of circuit-design, design, and technological solutions in the development of an invasive transistor biosensor,” Elektromagn. Volny Elektron. Sist., 22, No. 4, 66-70 (2014).Google Scholar
  8. 8.
    Gudkov, A. G., Agasieva, S. V., Petrov, V. I., et al., “Studies of the potential for radio-frequency identification with passive labels for invasive biosensing,” Med. Tekh., No. 2, 26-29 (2015).Google Scholar
  9. 9.
    Gudkov, A. G., Tikhomirov, V. G., Agasieva, S. V., et al., “Studies of the characteristics of heterostructural transistors for biosensors by mathematical modeling,” Med. Fiz., No. 5, 82-86 (2017).Google Scholar
  10. 10.
    Agasieva, S. V., Gudkov, A. G., Ivanov, Y. A., et al., “Prospects for application of radio-frequency identification technology with passive tags in invasive biosensor systems,” Biomed. Eng., 49, No. 2, 26-29 (2015).Google Scholar
  11. 11.
    Tikhomirov, V. G., Gudkov, A. G., Agasieva, S. V., et al., “The sensitivity research of multiparameter biosensors based on HEMT by the mathematic modeling method,” J. Phys. Conf. Series, 917, 042016 (2017).Google Scholar
  12. 12.
    Yinghui Sun, Rongming Wang, and Kai Liu, “Substrate induced changes in atomically thin 2-dimensional semiconductors: Fundamentals, engineering, and applications,” Appl. Phys. Rev., 4, No. 1, 011301 (2017).Google Scholar
  13. 13.
    Kang, B. S., Wang, H. T., Pearton, S. J., et al., “Electrical detection of biomaterials using AlGaN/GaN HEMTs,” J. Appl. Phys., 104, No. 8, 031101 (2008).Google Scholar
  14. 14.
    Hung, S. C., Wang, Y. L., Hicks, B., Pearton S. J., et al., “Integration of selective area anodized AgCl thin film with AlGaN/GaN HEMTs for chloride ion detection,” Electrochem. Solid-State Lett., 11, No. 9, H241-H244 (2008).CrossRefGoogle Scholar
  15. 15.
    Tikhomirov, V. G., Maleev, N. A., Kuz’menkov, A. G., et al., “Studies of the effects of the parameters of the gate region on the static characteristics of UHF field effect transistors based on pseudomorphic AlGaAs–InGaAs–GaAs heterostructures,” Fiz. Tekh. Poluprovod., 45, No. 10, 1405 (2011).Google Scholar
  16. 16.
    Tikhomirov, V., Zemlyakov, V., Volkov, V., et al., “Optimization of the parameters of HEMT GaN/AlN/AlGaN heterostructures for microwave transistors using numerical simulation,” Semiconductors, 50, No. 2, 244-248 (2016).CrossRefGoogle Scholar
  17. 17.
    Kang, B. S., Wang, H. T., Gila, B. P., et al., “pH sensor using AlGaN/GaN high electron mobility transistors with Sc2O3 in the gate region,” Appl. Phys. Lett., 91, 012110 (2007).CrossRefGoogle Scholar
  18. 18.
    Tao Kong, Yang Chen, Yiping Ye, et al., “An amperometric glucose biosensor based on the immobilization of glucose oxidase on the ZnO nanotubes,” Sensors and Actuators B, 138, 344-350 (2009).Google Scholar
  19. 19.
    Chu, B. H., Kang, B. S., Hung, S. C., et al., “Aluminum gallium nitride (GaN)/GaN high electron mobility transistor-based sensors for glucose detection in exhaled breath condensate,” J. Diabetes Sci. Technol., 4, No. 1, 171-179 (2010).CrossRefGoogle Scholar
  20. 20.
    Fall, P. J. and Szerlip, H. M., “Lactic acidosis: from sour milk to septic shock,” J. Intensive Care Med., 20, 255-271 (2005).CrossRefGoogle Scholar
  21. 21.
    Ma, S., Liao, Q., Liu, H., et al., “An excellent enzymatic lactic acid biosensor with ZnO nanowires-gated AlGaAs/GaAs high electron mobility transistor,” Nanoscale, 4, 6415-6418 (2012).CrossRefGoogle Scholar
  22. 22.
    Baur, B., Howgate, J., Eickhoffa M., et al., “Catalytic activity of enzymes immobilized on AlGaN/GaN solution gate field-effect transistors,” Appl. Phys. Meth., 89, 183901 (2006).Google Scholar
  23. 23.
    Gupta, S. K., Wu, H. H., Kwak, K. J., et al., “Interfacial design and structure of protein/polymer films on oxidized AlGaN surfaces,” J. Phys. D. Appl. Phys., 44, 034010 (2011).CrossRefGoogle Scholar
  24. 24.
    Foster, C. M., Collazo, R., Sitar Z., et al., “Cell behavior on gallium nitride surfaces: peptide affinity attachment versus covalent functionalization,” Langmuir, 29, 8377-8384 (2013).CrossRefGoogle Scholar
  25. 25.
    Chih-Cheng Huang, Geng-Yen Lee, Jen-Inn Chyi, et al., “Study of protein-peptide binding affinity using AlGaN/GaN high electron mobility transistors,” ECS Trans., 50, No. 6, 223-232 (2013).Google Scholar
  26. 26.
    Makowski, M. S., Bryan, I., Sitar Z., et al., “Kinase detection with gallium nitride based high electron mobility transistors,” Appl. Phys. Lett., 103, 013701 (2013).CrossRefGoogle Scholar
  27. 27.
    Wang, Y., Casal, P., Lu W., et al., “Toward single molecule detection in physiological buffer using planar FET biosensors,” in: Proceedings of the 71st Annual Device Research Conference (DRC 2013), IEEE Catalog Number: CFP13DRC-POD, 6 (2013).Google Scholar
  28. 28.
    Sarangadharana, I., Regmia, A., Yen-Wen Chena, et al., “High sensitivity cardiac troponin I detection in physiological environment using AlGaN/GaN High Electron Mobility Transistor (HEMT) Biosensors,” Biosens. Bioelectr., 100, 282-289 (2018).Google Scholar
  29. 29.
    Chu, C. H., Sarangadharan, I., Regmi A., et al., “Beyond the Debye length in high ionic strength solution: Direct protein detection with field-effect transistors (FETs) in human serum,” Sci. Rep., 7, No. 1, 5256 (2017).CrossRefGoogle Scholar
  30. 30.
    Arden, W., Brillouet, M., Cogez P., et al., ITRS More-than-Moore whitepaper, The International Technology Roadmap for Semiconductors Consortium (2010);, pdf.
  31. 31.
    Leamon, J. H. and Rothberg, J. M., “Cramming more sequencing reactions onto microreactor chips,” Chem. Rev., 107, 3367-3376 (2007).CrossRefGoogle Scholar
  32. 32.
    Bergveld, P., “Thirty years of ISFETOLOGY – what happened in the past 30 years and what may happen in the next 30 years,” Sens. Actuat. B. Chem., 88, 1-20 (2003).CrossRefGoogle Scholar
  33. 33.
    Bausells, J., Carrabina, J., Errachid, A., and Merlos, A., “Ion-sensitive field-effect transistors fabricated in a commercial CMOS technology,” Sens. Actuat. B. Chem., 57, No. 1-3, 56-62 (1999).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • A. G. Gudkov
    • 1
    Email author
  • S. V. Agasieva
    • 2
  • V. G. Tikhomirov
    • 3
  • V. V. Zherdeva
    • 4
  • D. V. Klinov
    • 5
  • V. D. Shashurin
    • 1
  1. 1.Bauman Moscow State Technical UniversityMoscowRussia
  2. 2.Peoples’ Friendship University of RussiaMoscowRussia
  3. 3.Saint Petersburg Electrotechnical University “LETI”St. PetersburgRussia
  4. 4.Russian Medical Academy of Postgraduate EducationMinistry of Health of the Russian FederationMoscowRussia
  5. 5.Federal Research and Clinical Center for Physical-and-Chemical MedicineFederal Medical and Biological AgencyMoscowRussia

Personalised recommendations