Advertisement

Testing of a Short-Term Blood Glucose Prediction Algorithm Using the DirecNet Database

  • N. A. Bazaev
  • P. A. RudenkoEmail author
  • V. M. Grinval’d
  • K. V. Pozhar
  • E. L. Litinskaia
Article

A short-term blood glucose prediction algorithm was validated using the DirecNet clinical database. Noise at 0, 10, 15, 20, and 25% levels was added to blood glucose tracks to assess the stability of the algorithm. Computer modeling showed that the average prediction error was 2.0, 3.0, 6.6, 7.4, and 13.7%, respectively.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bequette, B. W., “Algorithms for a closed-loop artificial pancreas: The case for model predictive control,” J. Diab. Sci. Technol., 7, No. 6, 1632-1643 (2013).CrossRefGoogle Scholar
  2. 2.
    Pinsker, J. E., et al., “Randomized crossover comparison of personalized MPC and PID control algorithms for the artificial pancreas,” Diabetes Care, 39, No. 7, 1135-1142 (2016).CrossRefGoogle Scholar
  3. 3.
    Rudenko, P. A., Bazaev, N. A., Pozhar, K. V., Litinskaia, E. L., Grinval’d, V. M., and Chekasin, A. I., “Getting Daily Blood Glucose Tracks Using Clinical Protocols of the DirecNet Database,” Biomed. Eng., 51, No. 5, 346-349 (2018).CrossRefGoogle Scholar
  4. 4.
    Clarke, W. L., et al., “Evaluating clinical accuracy of systems for self-monitoring of blood glucose,” Diabetes Care, 10, No. 5, 622-628 (1987).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • N. A. Bazaev
    • 1
    • 2
  • P. A. Rudenko
    • 1
    Email author
  • V. M. Grinval’d
    • 1
    • 2
  • K. V. Pozhar
    • 1
    • 2
  • E. L. Litinskaia
    • 1
  1. 1.Institute of Biomedical SystemsNational Research University of Electronic Technology (MIET)MoscowRussia
  2. 2.Institute for Bionic Technologies and EngineeringI. M. Sechenov First Moscow State Medical UniversityMoscowRussia

Personalised recommendations