Advertisement

Biomedical Engineering

, Volume 52, Issue 5, pp 348–352 | Cite as

Use of Neural Network-Based Deep Learning Techniques for the Diagnostics of Skin Diseases

  • D. A. GavrilovEmail author
  • A. V. Melerzanov
  • N. N. Shchelkunov
  • E. I. Zakirov
Article
  • 9 Downloads

Melanoma is one of the most dangerous types of cancer. The accuracy of visual diagnosis of melanoma directly depends on the experience and specialty of the physician. Current development of image processing and machine learning technologies allows systems based on artificial neural convolutional networks to be created, these being better than humans in object classification tasks, including the diagnostics of malignant skin neoplasms. Presented here is an algorithm for the early diagnostics of melanoma based on artificial deep convolutional neural networks. This algorithm can discriminate benign and malignant skin tumors with an accuracy of at least 91% by examination of dermatoscopy images.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    WHO recommendations 2005 [electronic resource], http://www.who.int/mediacentre/news/notes/2005/np07/ru/ (accessed January 17, 2018).
  2. 2.
    Gidranovich, A. V., Lud, N. G., Shlyakhtunov, E. A., Lud, L. N., Zhukovets, A. G., Prokoshin, A. V., and Kozhar, V. L., “Perspectives for the use of expert systems in the early diagnosis of skin melanoma,” Vestn. VGMU, 14, No. 2, 46-55 (2015).Google Scholar
  3. 3.
    Kozlov, S. V., Neretin, E. Yu., and Kukolkina, V. V., “Perspectives for the use of ‘machine vision’ in digital dermatoscopy in suspected skin melanoma,” Saratov. Nauchno-Med. Zh., 10, No. 2, 6-10 (2014).Google Scholar
  4. 4.
    Kozlov, S. V., Neretin, E. Yu., and Kukolkina, V. V., “Diagnosis of skin melanoma using an expert system,” Vestn. Nov. Med. Tekhnol., 8, No. 1, 1-4 (2014).Google Scholar
  5. 5.
    Binder, M., Schwarz, M., Winkler, A., Steiner, A., Kaider, A., Wolff, K., and Pehamberger, H., “Epiluminescence microscopy. A useful tool for the diagnosis of pigmented skin lesions for formally trained dermatologists,” Arch. Dermatol., 131, No. 3, 286-291 (1995).CrossRefGoogle Scholar
  6. 6.
    The ABCDEs of Melanoma [electronic resource], https://www.melanoma.org/understand-melanoma/diagnosing-melanoma/detection-screening/abcdes-melanoma (accessed January 24, 2018).
  7. 7.
    Friedman, R. J., Rigel, D. S., and Kopf, A. W., “Early detection of malignant melanoma: The role of physician examination and self-examination of the skin,” CA Cancer J. Clin., No. 35, 130-151 (1985).Google Scholar
  8. 8.
    Pankratov, V. G. and Revotyuk, A. A., “Dermatoscopy of pigmented skin formations − a noninvasive test for differential diagnosis of skin melanoma,” Med. Novosti, No. 4, 6-12 (2011).Google Scholar
  9. 9.
    Jain, S., Jagtap, V., and Pise, N., “Computer aided melanoma skin cancer detection using image processing,” Procedia Comput. Sci., 48, 736-741 (2015).Google Scholar
  10. 10.
    Chernavina, V. A., “Dermatoscopy as a socially important investigation,” Zdravookhr. Yugry Opyt Innov., No. 1, 49-53 (2015).Google Scholar
  11. 11.
    Gavrilov, D. A., “Artificial Intelligence based skin lesions photo recognition,” AMEC LIVE and VISAGE Joint Meeting, Monaco (2017).Google Scholar
  12. 12.
    Tsvetkova, L. A., “Artificial intelligence technology as a factor in digitization of the economy in Russia,” Ekonomika Nauki, 3, No. 2, 126-144 (2017).Google Scholar
  13. 13.
    Trubitsyna, M. V., “Skin melanoma: problems and methods in clinical diagnosis,” in: Proc. XIII All-Russian Burdenko Students’ Sci. Conf. [in Russian], Molod. Innovats. Vestn., 20-22 (2017).Google Scholar
  14. 14.
    ISIS Archive [electronic resource], Kitware, Inc., https://isic-archive.com/ (accessed January 24, 2018).
  15. 15.
    Mishraa, N. K. and Celebi, M. E., “An overview of melanoma detection in dermoscopy images using image processing and machine learning” [electronic resource], https://arxiv.org/ftp/arxiv/papers/1601/1601.07843.pdf (2016) (accessed January 29, 2018).
  16. 16.
    Torrey, L. and Shavlik, J., “Transfer learning,” in: Handbook of Research on Machine Learning Applications and Trends: Algorithms, Methods, and Techniques, IGI Global (2009), pp. 242-264.Google Scholar
  17. 17.
    Shlens, J., “Train your own image classifier with Inception in TensorFlow” [electronic resource], https://research.googleblog.com/2016/03/train-your-own-image-classifier-with.html (2016) (accessed January 24, 2018).
  18. 18.
    Szegedy, C. et al., “Rethinking the Inception Architecture for computer vision” [electronic resource], http://arxiv.org/abs/1512.00567 (2015) (accessed January 25, 2018).
  19. 19.
    ImageNet Large Scale Visual Recognition Competition (ILSVRC) [electronic resource], http://www.image-net.org/challenges/LSVRC/ (accessed July 13, 2018).
  20. 20.
    Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bernstein, M., Berg, A. C., and Fei-Fei, L., “ImageNet large scale visual recognition challenge,” Int. J. Comput. Vis., 115, No. 3, 211-252 (2015).MathSciNetCrossRefGoogle Scholar
  21. 21.
    Sokolova, A. V. and Malishevskaya, N. P., “Errors in the diagnosis of melanocytic neoplasms of the skin,” Sovremen. Prob. Nauki Obraz., No. 2 (2018) [electronic resource], http://www.science-education.ru/ru/article/view?id=27502 (accessed September 04, 2018).
  22. 22.
    Mordovtseva, V. V., Volgin, V. N., and Kakhishvili, N. N., “Benign skin formations presenting diagnostic difficulties,” Dermatologiya, No. 1, 26-29 (2012).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • D. A. Gavrilov
    • 1
    Email author
  • A. V. Melerzanov
    • 1
  • N. N. Shchelkunov
    • 1
  • E. I. Zakirov
    • 1
  1. 1.Moscow Institute of Physics and TechnologyDolgoprudnyRussia

Personalised recommendations