Biomedical Engineering

, Volume 52, Issue 5, pp 311–315 | Cite as

Channel Rotor Calculation for a Centrifugal Blood Pump

  • A. P. KuleshovEmail author
  • G. P. Itkin

A test model of a centrifugal pump with constant cross-section channels in the rotor was developed using 3D computer simulation. The channels are shaped as a logarithmic spiral. The geometry of the flow channel providing optimal flow in the nominal operating mode (flow, 5 L/min; pressure drop, 100 mm Hg) was calculated. In addition, pump operation conditions in the extracorporeal membrane oxygenation (ECMO) mode were considered. The main requirements imposed on the developed test model were those of meeting the allowable shear stress threshold and minimizing the stagnation and flow recirculation zones.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Thamsen, B., Blümel, B., Schaller, J., Paschereit, C. O., Affeld, K., Goubergrits, L., and Kertzscher, U., “Numerical analysis of blood damage potential of the HeartMate II and HeartWare HVAD rotary blood pumps,” Artif. Org., 39, No. 8, 651-659 (2015).CrossRefGoogle Scholar
  2. 2.
    Taskin, M. E., Fraser, K. H., Zhang, T., Gellman, B., Fleischli, A., Dasse, K. A., and Griffith, B. P., “Computational сharacterization of flow and hemolytic performance of the UltraMag blood pump for circulatory support,” Artif. Org., 34, No. 12, 1099-1113 (2010).CrossRefGoogle Scholar
  3. 3.
    Yu, H., Janiga, G., and Thévenin, D., “Computational fluid dynamics-based design optimization method for Archimedes screw blood pumps,” Artif. Org., 40, No. 4, 341-352 (2016).CrossRefGoogle Scholar
  4. 4.
    Mizunuma, H. and Nakajima, R., “Experimental study on the shear stress distributions in a centrifugal blood pump,” Artif. Org., 31, No. 7, 550-559 (2007).CrossRefGoogle Scholar
  5. 5.
    Nishida, M., Yamane, T., Tsukamoto, Y., Ito, K., Konishi, T., Masuzawa, T., et al., “Shear evaluation by quantitative flow visualization near the casing surface of a centrifugal blood pump,” JSME Int. J., No. 45, 981-988 (2002).CrossRefGoogle Scholar
  6. 6.
    Kido, K., Hoshi, H., Watanabe, N., Kataoka, H., Ohuchi, K., Asama, J., et al., “Computational fluid dynamics analysis of the pediatric tiny centrifugal blood pump (TinyPump),” Artif. Org., 30, No. 3, 392-399 (2006).CrossRefGoogle Scholar
  7. 7.
    Kijima, T., Oshiyama, H., Horiuchi, K., Nogawa, A., Hamasaki, H., Amano, N., Nojiri, C., Fukasawa, H., and Akutsu, T., “A straight path centrifugal blood pump concept in the Capiox centrifugal pump,” Artif. Org., 17, No. 7, 593-598 (1993).CrossRefGoogle Scholar
  8. 8.
    Nojiri C. et al., “Recent progress in the development of Terumo implantable left ventricular assist system,” ASAIO J., 45, 392-399 (1999).CrossRefGoogle Scholar
  9. 9.
    Gautier, S. V., Poptsov, V. N., and Spirina, E. A., Extracorporeal Membrane Oxygenation in Cardiosurgery and Transplantology [in Russian], Triada, Moscow (2013).Google Scholar
  10. 10.
    Lomakin, A. A., Centrifugal and Axial Pumps [in Russian], Mashinostroenie, Moscow (1966).Google Scholar
  11. 11.
    Mashin, A. N., Calculation and Design of Outlet Volute and Semi-spiral Supply for a Centrifugal Pump [in Russian], MEI, Moscow (1980).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.V. I. Shumakov Federal Research Center of Transplantology and Artificial Organs, Ministry of Health of the Russian FederationMoscowRussia

Personalised recommendations