Biomedical Engineering

, Volume 52, Issue 5, pp 305–310 | Cite as

Plasma Glow Discharge as a Tool for the Dissection and Coagulation of Biological Tissues

  • S. V. BelovEmail author
  • Yu. K. Danyleiko
  • A. B. Egorov
  • E. G. Osmanov
  • V. A. Salyuk

We present here the results of studies of the mechanism of plasma formation and the kinetics of plasma glow discharge required for making electrosurgical instruments with controllable plasma temperature. Numerical data on the energy parameters of the high-frequency current required for stable heating of the plasma glow discharge at atmospheric pressure are presented. Scientifically based technical solutions for creating prototype high-quality electrosurgical instruments with controlled-temperature low-temperature plasma glow discharge are described. The value of using a single technical platform based on a modular design for the main functional elements of high-frequency electrosurgical instruments with biological tissue dissection and coagulation modes based on temperature-controllable plasma glow discharge is assessed.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Baburin, N. V., Belov, S. V., Danyleiko, Yu. K., Egorov, A. B., Lebedeva, T. P., Nefedov, S. M., Osiko, V. V., and Salyuk, V. A., “Heterogenous recombination in water vapor plasma,” Dokl. Akad. Nauk., 426, No. 4, 468-470 (2009).Google Scholar
  2. 2.
    Polyakov, O. V., “Current density and charge transfer at the interphase boundary of a glow discharge and the cathodic electrolyte,” Kondens. Sredy Mezhfaz. Gran., 5, No. 1, 102-105 (2003).Google Scholar
  3. 3.
    Tables of the Spectral Lines of Atoms and Ions: A Handbook [in Russian], Energoatomizdat, Moscow (1982).Google Scholar
  4. 4.
    Woloszko, J. and Gilbride, C., “Coblation technology: plasma-mediated ablation for otolaryngology applications,” in: Rep. Arthro Care Corp., Sannvale, CA 940886 (2001), pp. 102-114.Google Scholar
  5. 5.
    Arya, A., Donne, A. J., and Nigam, A., “Double-blind randomized controlled study of coblation tonsillotomy versus coblation tonsil lectomy on postoperative pain,” Clin. Otolaryngol., 28, No. 6, 503-506 (2003).CrossRefGoogle Scholar
  6. 6.
    Woloszko, J., Kenneth, R., and Brown, G., “Plasma characteristics of repetitively-pulsed electrical discharges in saline solutions used for surgical procedures,” IEEE Trans. Plasma Sci., 30, No. 2, 1376-1383 (2001).Google Scholar
  7. 7.
    Sokol’skii, A. G., Zaika, A. B., Kuznetsov, V. V., and Gordiets, B. F., “Basic mathematical model for the physicochemical processes of the activation of aqueous solutions by low-temperature plasma,” in: Proc. 6th Int. Conf. “Molecular Biology, Physics, and Chemistry of Nonequilibrium Systems” [in Russian], Ivanovo, (2002), pp. 137-143.Google Scholar
  8. 8.
    Belov, S. V., Danyleiko, Yu. K., Nefedov, S. M., Osiko, V. V., and Salyuk, V. A., “High-frequency electrosurgical apparatuses with low-temperature plasma generation modes,” Biomed. Eng., 44, No. 1, 1-5 (2010).CrossRefGoogle Scholar
  9. 9.
    Belov, S. V., Danileiko, Y. K., Nefedov, S. M., Osiko, V. V., Salyuk, V. A., and Sidorov, V. A., “Specific features of generation of low-temperature plasma in high-frequency plasma electrosurgical apparatuses,” Biomed. Eng., 45, No. 2, 59-63 (2011).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • S. V. Belov
    • 1
    Email author
  • Yu. K. Danyleiko
    • 1
  • A. B. Egorov
    • 1
  • E. G. Osmanov
    • 2
  • V. A. Salyuk
    • 1
  1. 1.Prokhorov General Physics Institute, Russian Academy of SciencesMoscowRussia
  2. 2.I. M. Sechenov First Moscow State Medical UniversityMoscowRussia

Personalised recommendations