Advertisement

Biomedical Engineering

, Volume 52, Issue 5, pp 301–304 | Cite as

Electrical Stimulation of Human Connective Tissue Cells on Layers of Composite Structures with a Nanocarbon Framework

  • P. Yu. Privalova
  • A. Yu. GerasimenkoEmail author
  • N. N. Zhurbina
  • V. A. Petukhov
  • E. S. Pyankov
  • L. P. Ichkitidze
  • I. A. Suetina
  • M. V. Mezentseva
  • L. I. Russu
Article
  • 17 Downloads

A technique for electrical stimulation of growth of connective tissue cells on composite structures with a nanocarbon framework was developed. Cells were stimulated with pulsed electric signal (amplitude, 200 mV; pulse duration, 2.5 ms) for 5 h. A study of the effect of the electrical stimulation on the viability of cells showed an increase in the proliferative activity and in the density of cells adhering to the surface of composite structure layers. The aspect ratio for the cell structure subjected to the electrical stimulation was 1.4 times greater than for nonstimulated cells. The developed technique can be used in tissue engineering, an important branch of regenerative medicine.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Dvir, T. et al., “Nanotechnological strategies for engineering complex tissues,” Nat. Nanotechnol., 6, 13-22 (2011).CrossRefGoogle Scholar
  2. 2.
    Gargiulo, G., Applied Biomedical Engineering, IntechOpen (2011).Google Scholar
  3. 3.
    Kaur, G., “Electrically conductive polymers and composites for biomedical applications,” Royal Soc. Chem., 5, 37553-37567 (2015).Google Scholar
  4. 4.
    Naraghi, M., Carbone Nanotubes – Growth and Applications, IntechOpen (2011).Google Scholar
  5. 5.
    Chaejeong, H. et al., “The control of neural cell-to-cell interactions through non-contact electrical field stimulation using graphene electrodes,” Biomaterials, 32, 19-27 (2011).CrossRefGoogle Scholar
  6. 6.
    Yuen, F.L-Y et al., “Morphology of fibroblasts grown on substrates formed by dielectrophoretically aligned carbon nanotubes,” Cytotechnology, 56, 9-17 (2008).CrossRefGoogle Scholar
  7. 7.
    Jain, S. et al., “Vertical electricfield stimulated neural cell functionality on porous amorphous carbon electrodes,” Biomaterials, 34, 9252-9263 (2013).CrossRefGoogle Scholar
  8. 8.
    Gerasimenko, A. Yu. et al., “Laser structuring of carbon nanotubes in the albumin matrix for the creation of composite biostructures,” J. Biomed. Opt., 22, 065003 (2017).CrossRefGoogle Scholar
  9. 9.
    Shcherbakov, A. B. et al., “Silver preparations: yesterday, today, tomorrow,” Farm. Zh., No. 5, 45-57 (2006).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • P. Yu. Privalova
    • 1
  • A. Yu. Gerasimenko
    • 1
    • 2
    Email author
  • N. N. Zhurbina
    • 1
  • V. A. Petukhov
    • 1
  • E. S. Pyankov
    • 1
  • L. P. Ichkitidze
    • 1
    • 2
  • I. A. Suetina
    • 3
  • M. V. Mezentseva
    • 3
  • L. I. Russu
    • 3
  1. 1.National Research University of Electronic Technology (MIET)ZelenogradRussia
  2. 2.I. M. Sechenov First Moscow State Medical UniversityMinistry of Health of the Russian FederationMoscowRussia
  3. 3.Ivanovsky Institute of VirologyNational Research Center for Epidemiology and Microbiology named after the honorary academician N.F. GamaleyaMoscowRussia

Personalised recommendations