Advertisement

Mathematical Modeling of Thrombus Formation in Pulsatile Blood Pumps

  • L. V. Belyaev
  • A. B. Ivanchenko
  • A. V. Zhdanov
  • V. V. Morozov
Article

We present here the results of mathematical modeling of the process of thrombus formation in the chamber of a blood pump from a pulsatile-type circulation assist system with an output of 30 cm3 using two types of Russian- made mechanical heart valves. The effects of the type of mechanical heart valve on thrombus formation in the blood pump chamber during operation of the pulsatile-type circulation assist system were assessed.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Statistical Report [in Russian], Ministry of Health of the Russian Federation, Moscow (2012).Google Scholar
  2. 2.
    DeBakey, M. E., “The Odyssey of the artificial heart,” Artif. Organs, 24, No. 6, 405-411 (2000).CrossRefGoogle Scholar
  3. 3.
    Nosé, Y., Yoshikawa, M., Murabayashi, S., and Takano, T., “Development of rotary blood pump technology: past, present, and future,” Artif. Organs, 24, No. 6, 412-420 (2000).CrossRefGoogle Scholar
  4. 4.
    Barr, M. L., “Mechanical cardiac support 2000: current applications and future trial design,” JACC, 37, No. 1, 340-370 (2001).CrossRefGoogle Scholar
  5. 5.
    Slater, J. P., Rose, E. A., Levin, H. R., Frazier, O. H., Roberts, J. K., Weinberg, A. D., and Oz, M. C., “Low thromboembolic risk without anticoagulation using advanced-design left ventricular assist devices,” Ann. Thorac. Surg., 62, No. 5, 1321-1328 (1996).CrossRefGoogle Scholar
  6. 6.
    Minami, K., El-Banayosy, A., Sezai, A., Arusoglu, L., Sarnowsky P., Fey, O., and Koerfer, R., “Morbidity and outcome after mechanical ventricular support using Thoratec, Novacor, and HeartMate for bridging to heart transplantation,” Artif. Organs, 24, No. 6, 421-426 (2000).CrossRefGoogle Scholar
  7. 7.
    Bachmann, C., Hugo, G., Rosenberg, G., Deutsch, S., Fontaine, A., and Tarbell, J. M., “Fluid dynamics of a pediatric ventricular assist device,” Artif. Organs, 24, No. 5, 362-372 (2000).CrossRefGoogle Scholar
  8. 8.
    Brown, C. H., Leverett, L. B., and Lewis, C. H., “Morphological, biochemical, and functional changes in human platelets subjected to shear stress,” J. Lab. Clin. Med., 86, No. 3, 462-471 (1975).Google Scholar
  9. 9.
    Francischelli, D. E., Tarbell, J. M., and Geselowitz, D. B., “Local blood residence times in the Penn State artificial heart,” Artif. Organs, 15, No. 3, 218-224 (1991).CrossRefGoogle Scholar
  10. 10.
    Konig, C. S. and Clark, C., “Flow mixing and fluid residence times in a model of a ventricular assist device,” Med. Eng. Phys., 23, No. 2, 99-110 (2001).CrossRefGoogle Scholar
  11. 11.
    Sallam, A. M. and Hwang, N. H., “Human red blood cells hemolysis in a turbulent shear flow: contribution of Reynolds shear stress,” Biorheology, 21, No. 6, 783-797 (1984).CrossRefGoogle Scholar
  12. 12.
    Belyaev, L. V, Zhdanov, A. V., and Morozov, V. V., “Materials and technologies for pulsative Russian artificial heart ventricle manufacturing,” in: 2017 International Conference on Mechanical, System and Control Engineering, ICMSC 2017 [Internet] (2017), pp. 22-26.Google Scholar
  13. 13.
    Medvitz, R. B., Development and Validation of a Computational Fluid Dynamic Methodology for Pulsatile Blood Pump Design and Prediction of Thrombus Potential: PhD Thesis, Pennsylvania State University (2008).Google Scholar
  14. 14.
    Medvitz, R. B., Kreider, J. W., Manning, K. B., Fontaine, A. A., Steven, D., and Paterson, E. G., “Development and validation of a computational fluid dynamics methodology for simulation of pulsatile left ventricular assist devices,” ASAIO J., 53, No. 2, 122-131 (2007).CrossRefGoogle Scholar
  15. 15.
    Hubbell, J. A. and McIntire, L. V., “Visualization and analysis of mural thrombogenesis on collagen, polyurethane, and nylon,” Biomaterials, 7, No. 5, 354-363 (1986).CrossRefGoogle Scholar
  16. 16.
    Balasubramanian, V. and Slack, S. M., “The effect of fluid shear and co-adsorbed proteins on the stability of immobilized fibrinogen and subsequent platelet interactions,” J. Biomater. Sci. Polymer. Edn., 13, No. 5, 543-561 (2002).CrossRefGoogle Scholar
  17. 17.
    Belyaev, L. V., Ivanchenko, A. B., Zhdanov, A. V., and Morozov, V. V., “Mathematical modeling of the operation of pediatric systems of auxiliary blood circulation of pulsatile type with different types of inlet valves,” Biomed. Eng., 50, No. 4, 224-228 (2016).CrossRefGoogle Scholar
  18. 18.
    Rosenfeld, M., Avrahami, I., and Einav, S., “Unsteady effects on the flow across tilting disk valves,” J. Biomech. Eng., 124, No. 1, 21-29 (2002).CrossRefGoogle Scholar
  19. 19.
    Avrahami, I., Rosenfeld, M., Raz, S., and Einav, S., “Numerical model of flow in a sac_type ventricular assist device,” Artif. Organs, 30, No. 7, 529-538 (2006).CrossRefGoogle Scholar
  20. 20.
    Belyaev, L. V., Ivanchenko, A. B., Zhdanov, A. V., and Morozov, V. V., “Mathematical modeling of hemolysis in pulsatile blood pumps,” Biomed. Eng., 51, No. 2, 77-82 (2017).CrossRefGoogle Scholar
  21. 21.
    Bumrungpetch, J., Mechanism Design of Ventricular Assist Device: PhD Thesis, Queensland University of Technology (2016).Google Scholar
  22. 22.
    Nosé, Y., “Design and development strategy for the rotary blood pump,” Artif. Organs, 22, No. 6, 438-446 (1988).MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • L. V. Belyaev
    • 1
  • A. B. Ivanchenko
    • 1
  • A. V. Zhdanov
    • 1
  • V. V. Morozov
    • 1
  1. 1.Vladimir State University named after Alexander and Nikolay StoletovsVladimirRussia

Personalised recommendations