Biomedical Engineering

, Volume 51, Issue 6, pp 407–410 | Cite as

Information Support System for Patients with Gestational Diabetes Mellitus

  • E. A. Pustozerov
  • Z. M. Yuldashev
  • P. V. Popova
  • Ya. A. Bolotko
  • A. S. Tkachuk
Article
  • 8 Downloads

We describe here the development of a telemedical system for monitoring diabetes mellitus and providing information to support patients with gestational diabetes mellitus (GDM). Recommendations for preventing postpran-dial glycemia were developed using prognostic models based on experimental data obtained from individual electronic diaries. During testing of a series of models for patients with GDM, the best results were obtained by regression modeling using rules with added instance-based corrections.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Karpel’ev, V. A., Filippov, Yu. I., Tarasov, Yu. V., et al., “Mathematical modeling of a glycemia regulation system in patients with diabetes mellitus,” Vestn. Ross. Akad. Med. Nauk., 70, No. 5, 549-560 (2015).Google Scholar
  2. 2.
    Cescon, M., Modeling and Prediction in Diabetes Physiology, Department of Automatic Control, Lund Institute of Technology, Lund University (2013), p. 215.Google Scholar
  3. 3.
    Poulsen, J. U., DIAdvisor. Personal Glucose Predictive Diabetes Advisor. Final Publishable Summary Report, European Commission (2012), p. 39.Google Scholar
  4. 4.
    Ignell, C., Gestational Diabetes Mellitus – Prevalence in Southern Sweden and Risk Factors for Subsequent Diabetes, Department of Clinical Sciences, Lund University, (2015), p. 73.Google Scholar
  5. 5.
    Pustozerov, E. A. and Yuldashev, Z. M., “A method and system for information support for patients with diabetes mellitus,” Biomed. Radioelektronika, No. 11, 16-20 (2013).Google Scholar
  6. 6.
    Pustozerov, E. A. and Yuldashev, Z. M., “Remote monitoring of the status of patients with diabetes mellitus,” Med. Tekhnika, No. 2, 15-18 (2014).Google Scholar
  7. 7.
    Quinlan, J. R., “Combining instance-based and model-based learning,” in: Proceedings of the Tenth International Conference on Machine Learning (1993), pp. 236-243.Google Scholar
  8. 8.
    Pustozerov, E. A., Popova, P. V., Tkachuk, A. S., Bolotko, Ya. A., and Gerasimov, A. S., “Use of an app with an observational diary in the clinical practice of the treatment of gestational diabetes mellitus,” Prob. Endokrinol., 62, No. 5, 32-33 (2016).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • E. A. Pustozerov
    • 1
  • Z. M. Yuldashev
    • 1
  • P. V. Popova
    • 2
  • Ya. A. Bolotko
    • 2
  • A. S. Tkachuk
    • 2
  1. 1.Saint Petersburg Electrotechnical University “LETI”St. PetersburgRussia
  2. 2.Almazov National Medical Research CentreSt. PetersburgRussia

Personalised recommendations