Advertisement

Negative genetic correlation between longevity and its hormetic extension by dietary restriction in Drosophila melanogaster

  • Federico H. Gomez
  • Leonel Stazione
  • Pablo Sambucetti
  • Fabian M. NorryEmail author
Research Article

Abstract

Longevity is a highly malleable trait which is influenced by many genetic and environmental factors including nutrition. Mild stress of dietary restriction (DR) is often beneficial by extending longevity in many organisms. Here, DR-induced effects on longevity were tested for genetic variation in a set of recombinant inbred lines (RIL) in D. melanogaster. Genetic variability was significant in the longevity response following a DR-treatment across RIL, with detrimental effects in several RIL but beneficial effects in other RIL. One quantitative trait locus (QTL) was consistently significant in the middle of chromosome 2 for DR-induced changes in longevity, including hormesis (an increase in longevity by DR). Another QTL co-localized with a previously found QTL for starvation resistance in females. Several other QTL were also significant on most chromosomal arms. Longevity in controls was negatively correlated to DR effects across RIL for longevity in females, the sex showing higher DR-induced hormesis. This negative genetic correlation highlights the importance to further investigate the effects of genetic variation in the strength of DR-induced hormesis in longevity and its sex-specificity.

Keywords

Hormesis Sex-specificity Starvation Quantitative trait loci Heat-induced hormesis 

Notes

Acknowledgements

This work was supported by Consejo Nacional de Investigaciones Científicas y Técnicas (Grant No. CONICET, PIP11220130100083CO) and grants from Agencia Nacional de Promoción Científica y Tecnológica (Grant No. ANPCyT, PICT-2017-1426) and Universidad de Buenos Aires to FMN.

Supplementary material

10522_2019_9852_MOESM1_ESM.pdf (447 kb)
Supplementary material 1 (PDF 452 kb)

References

  1. Cohen HY, Miller C, Bitterman KJ, Wall NR, Hekking B, Kessler B, Howitz KT, Gorospe M, de Cabo R, Sinclair DA (2004) Calorie restriction promotes mammalian cell survival by inducing the SIRT1 deacetylase. Science 305:390–392.  https://doi.org/10.1126/science.1099196 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Defays R, Gómez FH, Sambucetti P, Scannapieco AC, Loeschcke V, Norry FM (2011) Quantitative trait loci for longevity in heat-stressed Drosophila melanogaster. Exp Gerontol 46:819–826CrossRefGoogle Scholar
  3. Falconer DS, Mackay TFC (1996) Introduction to quantitative genetics, 4th edn. Prentice Hall, LondonGoogle Scholar
  4. FlyBase Consortium (2003) The FlyBase database of the Drosophila genome projects and community literature. Nucleic Acids Res 31:172–175CrossRefGoogle Scholar
  5. Fontana L, Partridge L, Longo VD (2010) Extending healthy life span—from yeast to humans. Science 328:321–326.  https://doi.org/10.1126/science.1172539 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Gasser SCM (2001) The molecular biology of the SIR proteins. Gene 279:1–16CrossRefGoogle Scholar
  7. Gomez FH, Bertoli CI, Sambucetti P, Scannapieco AC, Norry FM (2009) Heat induced hormesis in longevity as correlated response to thermal-stress selection in Drosophila buzzatii. J Therm Biol 34:17–22CrossRefGoogle Scholar
  8. Gomez FH, Sambucetti P, Norry FM (2016) Elevated extension of longevity by cyclically heat stressing a set of recombinant inbred lines of Drosophila melanogaster throughout their adult life. Biogerontology 17:883–892.  https://doi.org/10.1007/s10522-016-9658-4 CrossRefPubMedGoogle Scholar
  9. Haigis MC, Sinclair DA (2010) Mammalian sirtuins: biological insights and disease relevance. Annu Rev Pathol 5:253–295CrossRefGoogle Scholar
  10. Hansen M, Taubert S, Crawford D, Libina N, Lee S-J, Kenyon C (2007) Lifespan extension by conditions that inhibit translation in Caenorhabditis elegans. Aging Cell 6:95–110CrossRefGoogle Scholar
  11. Hansen M, Chandra A, Mitic LL, Onken B, Driscoll M, Kenyon C (2008) A role for autophagy in the extension of lifespan by dietary restriction in C. elegans. PLoS Genet 4:e24.  https://doi.org/10.1371/journal.pgen.0040024 CrossRefPubMedPubMedCentralGoogle Scholar
  12. Harrison DE, Strong R, Sharp ZD, Nelson JF, Astle CM, Flurkey K, Nadon NL, Wilkinson JE, Frenkel K, Carter CS, Pahor M, Javors MA, Fernandez E, Miller RA (2009) Rapamycin fed late in life extends lifespan in genetically heterogeneous mice. Nature 460:392–395CrossRefGoogle Scholar
  13. Heilbronn LK, Civitarese AE, Bogacka I, Smith SR, Hulver M, Ravussin E (2005) Glucose tolerance and skeletal muscle gene expression in response to alternate day fasting. Obes Res 13:574–581CrossRefGoogle Scholar
  14. Hekimi S, Guarente L (2003) Genetics and the specificity of the aging process. Science 299:1351–1354CrossRefGoogle Scholar
  15. Hercus MJ, Loeschcke V, Rattan SIS (2003) Lifespan extension of Drosophila melanogaster through hormesis by repeated mild heat stress. Biogerontology 4:149–156CrossRefGoogle Scholar
  16. Howitz KT, Bitterman KJ, Cohen HY, Lamming DW, Lavu S, Wood JG, Zipkin RE, Chung P, Kisielewski A, Zhang LL, Scherer B, Sinclair DA (2003) Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan. Nature 425:191–196CrossRefGoogle Scholar
  17. Kaeberlein M, Powers RW, Steffen KK, Westman EA, Hu D, Dang N, Kerr EO, Kirkland KT, Fields S, Kennedy BK (2005) Regulation of yeast replicative life span by TOR and Sch9 in response to nutrients. Science 310:1193–1196CrossRefGoogle Scholar
  18. Kaeberlein M et al (2006) Lifespan extension in Caenorhabditis elegans by complete removal of food. Aging Cell 5:487–494.  https://doi.org/10.1111/j.1474-9726.2006.00238.x CrossRefPubMedGoogle Scholar
  19. Kapahi P, Zid BM, Harper T, Koslover D, Sapin V, Benzer S (2004) Regulation of lifespan in Drosophila by modulation of genes in the TOR signaling pathway. Curr Biol 14:885–890CrossRefGoogle Scholar
  20. Kenyon C (2001) A conserved regulatory system for aging. Cell 105:165–168CrossRefGoogle Scholar
  21. Kenyon C (2005) The plasticity of aging: insights from long-lived mutants. Cell 105:449–460.  https://doi.org/10.1016/j.cell.2005.02.002 CrossRefGoogle Scholar
  22. Kim H-J et al (2010) Gene expression profiling implicates OXPHOS complexes in lifespan extension of flies over-expressing a small mitochondrial chaperone, Hsp22. Exp Gerontol 45:611–620.  https://doi.org/10.1016/j.exger.2009.12.012 CrossRefPubMedGoogle Scholar
  23. Kirkwood TBL (2005) Understanding the odd science of aging. Cell 120:437–447.  https://doi.org/10.1016/j.cell.2005.01.027 CrossRefPubMedGoogle Scholar
  24. Krittika S, Yadav P (2019) An overview of two decades of diet restriction studies using Drosophila. Biogerontology 20:723–740.  https://doi.org/10.1007/s10522-019-09827-0 CrossRefPubMedGoogle Scholar
  25. Le Bourg E (2009) Hormesis, aging, and longevity. Biochim Biophys Acta 1790:1030–1039.  https://doi.org/10.1016/j.bbagen.2009.01.004 CrossRefPubMedGoogle Scholar
  26. Le Bourg E (2018) Does calorie restriction in primates increase lifespan? Revisiting studies on macaques (Macaca mulatta) and mouse lemurs (Microcebus murinus). BioEssays 40:1800111.  https://doi.org/10.1002/bies.201800111 CrossRefGoogle Scholar
  27. Le Bourg E, Rattan SIS (2006) Can dietary restriction increase longevity in all species, particularly in human beings? Introduction to a debate among experts. Biogerontology 7:123–125CrossRefGoogle Scholar
  28. Le Bourg E, Rattan SIS (eds) (2008) Mild stress and healthy aging: applying hormesis in aging research and interventions. Springer, DordrechtGoogle Scholar
  29. Lee C, Longo V (2016) Dietary restriction with and without caloric restriction for healthy aging. F1000Research 5(F1000 Faculty Rev):117.  https://doi.org/10.12688/f1000research.7136.1 CrossRefGoogle Scholar
  30. Lin SJ, Defossez PA, Guarente L (2000) Requirement of NAD and SIR2 for life-span extension by calorie restriction in Saccharomyces cerevisiae. Science 289:2126–2128CrossRefGoogle Scholar
  31. Longo VD, Fabrizio P (2002) Regulation of longevity and stress resistance: a molecular strategy conserved from yeast to humans? Cell Mol Life Sci 59:903–908CrossRefGoogle Scholar
  32. López-Otín C, Blasco MA, Partridge L, Serrano M, Kroemer G (2013) The hallmarks of aging. Cell 153:1194–1217.  https://doi.org/10.1016/j.cell.2013.05.039 CrossRefPubMedPubMedCentralGoogle Scholar
  33. Lynch M, Walsh B (1998) Genetics and analysis of quantitative traits. Sinauer, SunderlandGoogle Scholar
  34. Mackay TFC (2001) Quantitative trait loci in Drosophila. Nat Rev Genet 2:11–20CrossRefGoogle Scholar
  35. Mair W, Dillin A (2008) Aging and survival: the genetics of life span extension by dietary restriction. Ann Rev Biochem 77:727–754CrossRefGoogle Scholar
  36. Masoro EJ (2005) Overview of caloric restriction and ageing. Mech Ageing Dev 126:913–922.  https://doi.org/10.1016/j.mad.2005.03.012 CrossRefPubMedGoogle Scholar
  37. Matai L, Sarkar GC, Chamoli M et al (2019) Dietary restriction improves proteostasis and increases life span through endoplasmic reticulum hormesis. Proc Natl Am Sci USA 116:17383–17392CrossRefGoogle Scholar
  38. Minois N (2000) Longevity and aging: beneficial effect of exposure to mild stress. Biogerontology 1:15–29CrossRefGoogle Scholar
  39. Moskalev AA, Plyusnina EN, Shaposhnikov MV (2011) Radiation hormesis and radioadaptive response in Drosophila melanogaster flies with different genetic backgrounds: the role of cellular stress-resistance mechanisms. Biogerontology 12:253–263.  https://doi.org/10.1007/s10522-011-9320-0 CrossRefPubMedGoogle Scholar
  40. Motta MC, Divecha N, Lemieux M, et al (2004) Mammalian SIRT1 represses forkhead transcription factors. Cell 116:551–56CrossRefGoogle Scholar
  41. Norry FM, Scannapieco AC, Sambucetti P, Bertoli CI, Loeschcke V (2008) QTL for the thermotolerance effect of heat hardening, knockdown resistance to heat and chill-coma recovery in an intercontinental set of recombinant inbred lines of Drosophila melanogaster. Mol Ecol 17:4570–4581CrossRefGoogle Scholar
  42. Parsons PA (2002) Radiation hormesis: challenging LNT theory via ecological and evolutionary considerations. Health Phys 82:513–516.  https://doi.org/10.1097/00004032-200204000-00011 CrossRefPubMedGoogle Scholar
  43. Partridge L, Pletcher SD, Mair W (2005) Dietary restriction, mortality trajectories, risk and damage. Mech Ageing Dev 126:35–41CrossRefGoogle Scholar
  44. Piper MDW, Skorupa D, Partridge L (2005) Diet, metabolism and lifespan in Drosophila. Exp Gerontol 40:857–862.  https://doi.org/10.1016/j.exger.2005.06.013 CrossRefPubMedGoogle Scholar
  45. Rattan SIS (2008) Hormesis in aging. Ageing Res Rev 7:63–78.  https://doi.org/10.1016/j.arr.2007.03.002 CrossRefPubMedGoogle Scholar
  46. Rattan SIS (2014) Molecular gerontology: from homeodynamics to hormesis. Curr Pharm Des 20:3036–3039.  https://doi.org/10.2174/13816128113196660708 CrossRefPubMedGoogle Scholar
  47. Rattan SIS, Demirovic D, Nizard C (2018) A preliminary attempt to establish multiple stress response profiles of human skin fibroblasts exposed to mild or severe stress during ageing in vitro. Mech Age Dev 170:92–97.  https://doi.org/10.1016/j.mad.2017.09.005 CrossRefGoogle Scholar
  48. Rice WR (1989) Analyzing tables of statistical tests. Evolution 43:223–225CrossRefGoogle Scholar
  49. Sambucetti P, Loeschcke V, Norry FM (2015) Patterns of longevity and fecundity at two temperatures in a set of heat-selected recombinant inbred lines of Drosophila melanogaster. Biogerontology 16(6):801–810.  https://doi.org/10.1007/s10522-015-9606-8 CrossRefPubMedGoogle Scholar
  50. Sarup P, Petersen SMM, Nielsen NC, Loeschcke V, Malmendal A (2016) Mild heat treatments induce long-term changes in metabolites associated with energy metabolism in Drosophila melanogaster. Biogerontology 17:873–882CrossRefGoogle Scholar
  51. Sørensen JG, Nielsen MM, Loeschcke V (2007) Gene expression profile analysis of Drosophila melanogaster selected for resistance to environmental stressors. J Evol Biol 20:1624–1636CrossRefGoogle Scholar
  52. Sørensen JG, Sarup P, Kristensen TN, Loeschcke V (2008) Temperature-induced hormesis in Drosophila. In: Le Bourg E, Rattan SIS (eds) Mild stress and healthy aging. Springer, DordrechtGoogle Scholar
  53. Stanfel MN, Shamieh LS, Kaeberlein M, Kennedy BK (2009) The TOR pathway comes of age. Biochim Biophys Acta 1790:1067–1074CrossRefGoogle Scholar
  54. StatSoft (1999) STATISTICA for Windows. Computer Program Manual. StatSoft Inc., TulsaGoogle Scholar
  55. Tatar M (2011) The plate half-full: status of research on the mechanisms of dietary restriction in Drosophila melanogaster. Exp Gerontol 5:363–368CrossRefGoogle Scholar
  56. Tower J (2009) Hsp and aging. Trends Endocrinol Metab 20:216–222CrossRefGoogle Scholar
  57. Tower J (2011) Heat-shock proteins and Drosophila aging. Exp Gerontol 46:355–362CrossRefGoogle Scholar
  58. Tower J (2017) Sex-specific gene expression and life span regulation. Trends Endocrinol Metab 28:735–747CrossRefGoogle Scholar
  59. Vellai T, Takacs-Vellai K, Zhang Y, Kovacs AL, Orosz L, Müller F (2003) Genetics: influence of TOR kinase on lifespan in C. elegans. Nature 426:620CrossRefGoogle Scholar
  60. Wang SC, Basten J, Zeng Z-B (2010) Windows QTL Cartographer 2.5. Department of Statistics. North Carolina State University, Raleigh, NCGoogle Scholar
  61. White TCR (1993) The inadequate environment: nitrogen and the abundance of animals. Springer, BerlinCrossRefGoogle Scholar
  62. Wood JG, Rogina B, Lavu S, Howitz K, Helfand SL, Tatar M, Sinclair D (2004) Sirtuin activators mimic caloric restriction and delay ageing in metazoans. Nature 430:686–689CrossRefGoogle Scholar
  63. Zeng Z-B (1994) Precision mapping of quantitative trait loci. Genetics 136:1457–1468Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Facultad de Ciencias Exactas y Naturales, Departamento de Ecología, Genética y EvoluciónUniversidad de Buenos AiresBuenos AiresArgentina
  2. 2.Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA) – CONICETUniversidad de Buenos AiresBuenos AiresArgentina

Personalised recommendations