Advertisement

Biogerontology

, Volume 20, Issue 6, pp 741–761 | Cite as

The protective function of non-coding DNA in DNA damage accumulation with age and its roles in age-related diseases

  • Guo-Hua QiuEmail author
  • Xintian Zheng
  • Mingjun Fu
  • Cuiqin Huang
  • Xiaoyan Yang
Review Article
  • 123 Downloads

Abstract

Aging is a progressive decline of physiological function in tissue and organ accompanying both accumulation of DNA damage and reduction of non-coding DNA. Peripheral non-coding DNA/heterochromatin has been proposed to protect the genome and centrally-located protein-coding sequences in soma and male germ cells against radiation and the invasion of exogenous nucleic acids. Therefore, this review summarizes the reduction of non-coding DNA/heterochromatin (including telomeric DNA and rDNA) and DNA damage accumulation during normal physiological aging and in various aging-related diseases. Based on analysis of data, it is found that DNA damage accumulation is roughly negatively correlated with the reduction of non-coding DNA and therefore speculated that DNA damage accumulation is likely due to the reduction of non-coding DNA protection in genome defense during aging. Therefore, it is proposed here that means to increase the total amount of non-coding DNA and/or heterochromatin prior to the onset of these diseases could potentially better protect the genome and protein-coding DNA, reduce the incidence of aging-related diseases, and thus lead to better health during aging.

Keywords

Non-coding DNA DNA damage accumulation Aging-related diseases Peripheral heterochromatin Genome protection 

Notes

Acknowledgements

We thank QIU Biqing for the critical reading of the manuscript. This work was supported by the Natural Science Foundation of Fujian Province (2018J01456 and 2016J01711) and Longyan Science and Technology Scheme (2017LY73 and 2017LY26). We declare no potential conflicts of interest.

References

  1. Ahlenstiel C, Mendez C, Lim ST, Marks K, Turville S, Cooper DA, Kelleher AD, Suzuki K (2015) Novel RNA duplex locks HIV-1 in a latent state via chromatin-mediated transcriptional silencing. Mol Ther Nucl Acids 4:e261Google Scholar
  2. Ahmed S, Brickner JH (2010) A role for DNA sequence in controlling the spatial organization of the genome. Nucl (Austin, Tex) 1:402–406Google Scholar
  3. Aho V, Myllys M, Ruokolainen V, Hakanen S, Mantyla E, Virtanen J, Hukkanen V, Kuhn T, Timonen J, Mattila K, Larabell CA, Vihinen-Ranta M (2017) Chromatin organization regulates viral egress dynamics. Sci Rep 7:3692PubMedPubMedCentralGoogle Scholar
  4. Aida J, Izumo T, Shimomura N, Nakamura K, Ishikawa N, Matsuura M, Poon SS, Fujiwara M, Sawabe M, Arai T, Takubo K (2010) Telomere lengths in the oral epithelia with and without carcinoma. Eur J Cancer (Oxf Engl 1990) 46:430–438Google Scholar
  5. Alder JK, Hanumanthu VS, Strong MA, DeZern AE, Stanley SE, Takemoto CM, Danilova L, Applegate CD, Bolton SG, Mohr DW, Brodsky RA, Casella JF, Greider CW, Jackson JB, Armanios M (2018) Diagnostic utility of telomere length testing in a hospital-based setting. Proc Natl Acad Sci USA 115:E2358–E2365PubMedGoogle Scholar
  6. Armanios M, Alder JK, Parry EM, Karim B, Strong MA, Greider CW (2009) Short telomeres are sufficient to cause the degenerative defects associated with aging. Am J Hum Genet 85:823–832PubMedPubMedCentralGoogle Scholar
  7. Aunan JR, Watson MM, Hagland HR, Soreide K (2016) Molecular and biological hallmarks of ageing. Br J Surg 103:e29–e46PubMedGoogle Scholar
  8. Aunan JR, Cho WC, Soreide K (2017) The biology of aging and cancer: a brief overview of shared and divergent molecular hallmarks. Aging Dis 8:628–642PubMedPubMedCentralGoogle Scholar
  9. Baker DJ, Childs BG, Durik M, Wijers ME, Sieben CJ, Zhong J, Saltness RA, Jeganathan KB, Verzosa GC, Pezeshki A, Khazaie K, Miller JD, van Deursen JM (2016) Naturally occurring p16(Ink4a)-positive cells shorten healthy lifespan. Nature 530:184–189PubMedPubMedCentralGoogle Scholar
  10. Bau DT, Lippman SM, Xu E, Gong Y, Lee JJ, Wu X, Gu J (2013) Short telomere lengths in peripheral blood leukocytes are associated with an increased risk of oral premalignant lesion and oral squamous cell carcinoma. Cancer 119:4277–4283PubMedGoogle Scholar
  11. Bergmann O, Bhardwaj RD, Bernard S, Zdunek S, Barnabe-Heider F, Walsh S, Zupicich J, Alkass K, Buchholz BA, Druid H, Jovinge S, Frisen J (2009) Evidence for cardiomyocyte renewal in humans. Science (New York, NY) 324:98–102Google Scholar
  12. Bergmann O, Zdunek S, Felker A, Salehpour M, Alkass K, Bernard S, Sjostrom SL, Szewczykowska M, Jackowska T, Dos Remedios C, Malm T, Andra M, Jashari R, Nyengaard JR, Possnert G, Jovinge S, Druid H, Frisen J (2015) Dynamics of cell generation and turnover in the human heart. Cell 161:1566–1575PubMedGoogle Scholar
  13. Bernal A, Tusell L (2018) Telomeres: implications for cancer development. Int J Mol Sci 19:294PubMedCentralGoogle Scholar
  14. Bernardes de Jesus B, Vera E, Schneeberger K, Tejera AM, Ayuso E, Bosch F, Blasco MA (2012) Telomerase gene therapy in adult and old mice delays aging and increases longevity without increasing cancer. EMBO Mol Med 4:691–704PubMedPubMedCentralGoogle Scholar
  15. Bitterman KJ, Medvedik O, Sinclair DA (2003) Longevity regulation in Saccharomyces cerevisiae: linking metabolism, genome stability, and heterochromatin. Microbiol Mol Biol Rev MMBR 67:376–399PubMedGoogle Scholar
  16. Blackburn EH, Epel ES, Lin J (2015) Human telomere biology: a contributory and interactive factor in aging, disease risks, and protection. Science (New York, NY) 350:1193–1198Google Scholar
  17. Blokzijl F, de Ligt J, Jager M, Sasselli V, Roerink S, Sasaki N, Huch M, Boymans S, Kuijk E, Prins P, Nijman IJ, Martincorena I, Mokry M, Wiegerinck CL, Middendorp S, Sato T, Schwank G, Nieuwenhuis EE, Verstegen MM, van der Laan LJ, de Jonge J, JN IJ, Vries RG, van de Wetering M, Stratton MR, Clevers H, Cuppen E, van Boxtel R (2016) Tissue-specific mutation accumulation in human adult stem cells during life. Nature 538:260–264PubMedPubMedCentralGoogle Scholar
  18. Boscolo-Rizzo P, Rampazzo E, Perissinotto E, Piano MA, Giunco S, Baboci L, Spinato G, Spinato R, Tirelli G, Da Mosto MC, Del Mistro A, De Rossi A (2015) Telomere shortening in mucosa surrounding the tumor: biosensor of field cancerization and prognostic marker of mucosal failure in head and neck squamous cell carcinoma. Oral Oncol 51:500–507PubMedGoogle Scholar
  19. Braidy N, Poljak A, Grant R, Jayasena T, Mansour H, Chan-Ling T, Smythe G, Sachdev P, Guillemin GJ (2015) Differential expression of sirtuins in the aging rat brain. Front Cell Neurosci 9:167PubMedPubMedCentralGoogle Scholar
  20. Brandt A, Krohne G, Grosshans J (2008) The farnesylated nuclear proteins KUGELKERN and LAMIN B promote aging-like phenotypes in Drosophila flies. Aging Cell 7:541–551PubMedGoogle Scholar
  21. Carninci P, Kasukawa T, Katayama S, Gough J, Frith MC, Maeda N, Oyama R, Ravasi T, Lenhard B, Wells C, Kodzius R, Shimokawa K, Bajic VB, Brenner SE, Batalov S, Forrest AR, Zavolan M, Davis MJ, Wilming LG, Aidinis V, Allen JE, Ambesi-Impiombato A, Apweiler R, Aturaliya RN, Bailey TL, Bansal M, Baxter L, Beisel KW, Bersano T, Bono H, Chalk AM, Chiu KP, Choudhary V, Christoffels A, Clutterbuck DR, Crowe ML, Dalla E, Dalrymple BP, de Bono B, Della Gatta G, di Bernardo D, Down T, Engstrom P, Fagiolini M, Faulkner G, Fletcher CF, Fukushima T, Furuno M, Futaki S, Gariboldi M, Georgii-Hemming P, Gingeras TR, Gojobori T, Green RE, Gustincich S, Harbers M, Hayashi Y, Hensch TK, Hirokawa N, Hill D, Huminiecki L, Iacono M, Ikeo K, Iwama A, Ishikawa T, Jakt M, Kanapin A, Katoh M, Kawasawa Y, Kelso J, Kitamura H, Kitano H, Kollias G, Krishnan SP, Kruger A, Kummerfeld SK, Kurochkin IV, Lareau LF, Lazarevic D, Lipovich L, Liu J, Liuni S, McWilliam S, Madan Babu M, Madera M, Marchionni L, Matsuda H, Matsuzawa S, Miki H, Mignone F, Miyake S, Morris K, Mottagui-Tabar S, Mulder N, Nakano N, Nakauchi H, Ng P, Nilsson R, Nishiguchi S, Nishikawa S, Nori F, Ohara O, Okazaki Y, Orlando V, Pang KC, Pavan WJ, Pavesi G, Pesole G, Petrovsky N, Piazza S, Reed J, Reid JF, Ring BZ, Ringwald M, Rost B, Ruan Y, Salzberg SL, Sandelin A, Schneider C, Schonbach C, Sekiguchi K, Semple CA, Seno S, Sessa L, Sheng Y, Shibata Y, Shimada H, Shimada K, Silva D, Sinclair B, Sperling S, Stupka E, Sugiura K, Sultana R, Takenaka Y, Taki K, Tammoja K, Tan SL, Tang S, Taylor MS, Tegner J, Teichmann SA, Ueda HR, van Nimwegen E, Verardo R, Wei CL, Yagi K, Yamanishi H, Zabarovsky E, Zhu S, Zimmer A, Hide W, Bult C, Grimmond SM, Teasdale RD, Liu ET, Brusic V, Quackenbush J, Wahlestedt C, Mattick JS, Hume DA, Kai C, Sasaki D, Tomaru Y, Fukuda S, Kanamori-Katayama M, Suzuki M, Aoki J, Arakawa T, Iida J, Imamura K, Itoh M, Kato T, Kawaji H, Kawagashira N, Kawashima T, Kojima M, Kondo S, Konno H, Nakano K, Ninomiya N, Nishio T, Okada M, Plessy C, Shibata K, Shiraki T, Suzuki S, Tagami M, Waki K, Watahiki A, Okamura-Oho Y, Suzuki H, Kawai J, Hayashizaki Y (2005) The transcriptional landscape of the mammalian genome. Science (New York, NY) 309:1559–1563Google Scholar
  22. Carone DM, Lawrence JB (2013) Heterochromatin instability in cancer: from the Barr body to satellites and the nuclear periphery. Semin Cancer Biol 23:99–108PubMedGoogle Scholar
  23. Castella M, Puerto S, Creus A, Marcos R, Surralles J (2007) Telomere length modulates human radiation sensitivity in vitro. Toxicol Lett 172:29–36PubMedGoogle Scholar
  24. Cawthon RM, Smith KR, O’Brien E, Sivatchenko A, Kerber RA (2003) Association between telomere length in blood and mortality in people aged 60 years or older. Lancet 361:393–395PubMedGoogle Scholar
  25. Chang ACY, Blau HM (2018) Short telomeres—a hallmark of heritable cardiomyopathies. Differ Res Biol Divers 100:31–36Google Scholar
  26. Chang S, Multani AS, Cabrera NG, Naylor ML, Laud P, Lombard D, Pathak S, Guarente L, DePinho RA (2004) Essential role of limiting telomeres in the pathogenesis of Werner syndrome. Nat Genet 36:877–882PubMedGoogle Scholar
  27. Chang AC, Ong SG, LaGory EL, Kraft PE, Giaccia AJ, Wu JC, Blau HM (2016) Telomere shortening and metabolic compromise underlie dystrophic cardiomyopathy. Proc Natl Acad Sci USA 113:13120–13125PubMedGoogle Scholar
  28. Cheng Y, Yu C, Huang M, Du F, Song C, Ma Z, Zhai X, Yang Y, Liu J, Bei JX, Jia W, Jin G, Li S, Zhou W, Liu J, Dai J, Hu Z (2017) Genetic association of telomere length with hepatocellular carcinoma risk: a Mendelian randomization analysis. Cancer Epidemiol 50:39–45PubMedGoogle Scholar
  29. Codd V, Nelson CP, Albrecht E, Mangino M, Deelen J, Buxton JL, Hottenga JJ, Fischer K, Esko T, Surakka I, Broer L, Nyholt DR, Mateo Leach I, Salo P, Hagg S, Matthews MK, Palmen J, Norata GD, O’Reilly PF, Saleheen D, Amin N, Balmforth AJ, Beekman M, de Boer RA, Bohringer S, Braund PS, Burton PR, de Craen AJ, Denniff M, Dong Y, Douroudis K, Dubinina E, Eriksson JG, Garlaschelli K, Guo D, Hartikainen AL, Henders AK, Houwing-Duistermaat JJ, Kananen L, Karssen LC, Kettunen J, Klopp N, Lagou V, van Leeuwen EM, Madden PA, Magi R, Magnusson PK, Mannisto S, McCarthy MI, Medland SE, Mihailov E, Montgomery GW, Oostra BA, Palotie A, Peters A, Pollard H, Pouta A, Prokopenko I, Ripatti S, Salomaa V, Suchiman HE, Valdes AM, Verweij N, Vinuela A, Wang X, Wichmann HE, Widen E, Willemsen G, Wright MJ, Xia K, Xiao X, van Veldhuisen DJ, Catapano AL, Tobin MD, Hall AS, Blakemore AI, van Gilst WH, Zhu H, Erdmann J, Reilly MP, Kathiresan S, Schunkert H, Talmud PJ, Pedersen NL, Perola M, Ouwehand W, Kaprio J, Martin NG, van Duijn CM, Hovatta I, Gieger C, Metspalu A, Boomsma DI, Jarvelin MR, Slagboom PE, Thompson JR, Spector TD, van der Harst P, Samani NJ (2013) Identification of seven loci affecting mean telomere length and their association with disease. Nat Genet 45:422–427 427e421–422 PubMedPubMedCentralGoogle Scholar
  30. Cohen S, Janicki-Deverts D, Turner RB, Casselbrant ML, Li-Korotky HS, Epel ES, Doyle WJ (2013) Association between telomere length and experimentally induced upper respiratory viral infection in healthy adults. JAMA 309:699–705PubMedPubMedCentralGoogle Scholar
  31. Consortium IHGS (2004) Finishing the euchromatic sequence of the human genome. Nature 431:931–945Google Scholar
  32. Cote HC, Soudeyns H, Thorne A, Alimenti A, Lamarre V, Maan EJ, Sattha B, Singer J, Lapointe N, Money DM, Forbes J, Wong J, Bitnun A, Samson L, Brophy J, Burdge D, Pick N, van Schalkwyk J, Montaner J, Harris M, Janssen P (2012) Leukocyte telomere length in HIV-infected and HIV-exposed uninfected children: shorter telomeres with uncontrolled HIV viremia. PLoS ONE 7:e39266PubMedPubMedCentralGoogle Scholar
  33. Cremer T, Cremer M, Cremer C (2018) The 4D nucleome: genome compartmentalization in an evolutionary context. Biochem Biokhimiia 83:313–325Google Scholar
  34. Dang W, Steffen KK, Perry R, Dorsey JA, Johnson FB, Shilatifard A, Kaeberlein M, Kennedy BK, Berger SL (2009) Histone H4 lysine 16 acetylation regulates cellular lifespan. Nature 459:802–807PubMedPubMedCentralGoogle Scholar
  35. de Lange T (1992) Human telomeres are attached to the nuclear matrix. EMBO J 11:717–724PubMedPubMedCentralGoogle Scholar
  36. Dialynas GK, Vitalini MW, Wallrath LL (2008) Linking heterochromatin protein 1 (HP1) to cancer progression. Mutat Res 647:13–20PubMedPubMedCentralGoogle Scholar
  37. Dumesic PA, Natarajan P, Chen C, Drinnenberg IA, Schiller BJ, Thompson J, Moresco JJ, Yates JR 3rd, Bartel DP, Madhani HD (2013) Stalled spliceosomes are a signal for RNAi-mediated genome defense. Cell 152:957–968PubMedPubMedCentralGoogle Scholar
  38. Effros RB (2000) Telomeres and HIV disease. Microbes Infect/Inst Pasteur 2:69–76Google Scholar
  39. Fahrenkrog B (2015) Histone modifications as regulators of life and death in Saccharomyces cerevisiae. Microbial Cell (Graz, Austria) 3:1–13Google Scholar
  40. Falcon AA, Aris JP (2003) Plasmid accumulation reduces life span in Saccharomyces cerevisiae. J Biol Chem 278:41607–41617PubMedPubMedCentralGoogle Scholar
  41. Faragher RG, McArdle A, Willows A, Ostler EL (2017) Senescence in the aging process. F1000Research 6:1219PubMedPubMedCentralGoogle Scholar
  42. Feser J, Truong D, Das C, Carson JJ, Kieft J, Harkness T, Tyler JK (2010) Elevated histone expression promotes life span extension. Mol Cell 39:724–735PubMedPubMedCentralGoogle Scholar
  43. Fitzpatrick AL, Kronmal RA, Kimura M, Gardner JP, Psaty BM, Jenny NS, Tracy RP, Hardikar S, Aviv A (2011) Leukocyte telomere length and mortality in the cardiovascular health study. J Gerontol Ser A Biol Sci Med Sci 66:421–429Google Scholar
  44. Geyer PK, Vitalini MW, Wallrath LL (2011) Nuclear organization: taking a position on gene expression. Curr Opin Cell Biol 23:354–359PubMedPubMedCentralGoogle Scholar
  45. Goldman RD, Shumaker DK, Erdos MR, Eriksson M, Goldman AE, Gordon LB, Gruenbaum Y, Khuon S, Mendez M, Varga R, Collins FS (2004) Accumulation of mutant lamin A causes progressive changes in nuclear architecture in Hutchinson-Gilford progeria syndrome. Proc Natl Acad Sci USA 101:8963–8968PubMedGoogle Scholar
  46. Gonzalo S, Kreienkamp R, Askjaer P (2017) Hutchinson-Gilford progeria syndrome: a premature aging disease caused by LMNA gene mutations. Ageing Res Rev 33:18–29PubMedGoogle Scholar
  47. Goytisolo FA, Samper E, Martin-Caballero J, Finnon P, Herrera E, Flores JM, Bouffler SD, Blasco MA (2000) Short telomeres result in organismal hypersensitivity to ionizing radiation in mammals. J Exp Med 192:1625–1636PubMedPubMedCentralGoogle Scholar
  48. Grabowska W, Sikora E, Bielak-Zmijewska A (2017) Sirtuins, a promising target in slowing down the ageing process. Biogerontology 18:447–476PubMedPubMedCentralGoogle Scholar
  49. Grewal SI, Jia S (2007) Heterochromatin revisited. Nat Rev Genet 8:35–46PubMedGoogle Scholar
  50. Guarente L (2011) Sirtuins, aging, and metabolism. Cold Spring Harb Symp Quant Biol 76:81–90PubMedGoogle Scholar
  51. Guetg C, Lienemann P, Sirri V, Grummt I, Hernandez-Verdun D, Hottiger MO, Fussenegger M, Santoro R (2010) The NoRC complex mediates the heterochromatin formation and stability of silent rRNA genes and centromeric repeats. EMBO J 29:2135–2146PubMedPubMedCentralGoogle Scholar
  52. Haithcock E, Dayani Y, Neufeld E, Zahand AJ, Feinstein N, Mattout A, Gruenbaum Y, Liu J (2005) Age-related changes of nuclear architecture in Caenorhabditis elegans. Proc Natl Acad Sci USA 102:16690–16695PubMedGoogle Scholar
  53. Haycock PC, Heydon EE, Kaptoge S, Butterworth AS, Thompson A, Willeit P (2014) Leucocyte telomere length and risk of cardiovascular disease: systematic review and meta-analysis. BMJ (Clin Res Ed) 349:g4227Google Scholar
  54. Haycock PC, Burgess S, Nounu A, Zheng J, Okoli GN, Bowden J, Wade KH, Timpson NJ, Evans DM, Willeit P, Aviv A, Gaunt TR, Hemani G, Mangino M, Ellis HP, Kurian KM, Pooley KA, Eeles RA, Lee JE, Fang S, Chen WV, Law MH, Bowdler LM, Iles MM, Yang Q, Worrall BB, Markus HS, Hung RJ, Amos CI, Spurdle AB, Thompson DJ, O’Mara TA, Wolpin B, Amundadottir L, Stolzenberg-Solomon R, Trichopoulou A, Onland-Moret NC, Lund E, Duell EJ, Canzian F, Severi G, Overvad K, Gunter MJ, Tumino R, Svenson U, van Rij A, Baas AF, Bown MJ, Samani NJ, t’Hof FNG, Tromp G, Jones GT, Kuivaniemi H, Elmore JR, Johansson M, McKay J, Scelo G, Carreras-Torres R, Gaborieau V, Brennan P, Bracci PM, Neale RE, Olson SH, Gallinger S, Li D, Petersen GM, Risch HA, Klein AP, Han J, Abnet CC, Freedman ND, Taylor PR, Maris JM, Aben KK, Kiemeney LA, Vermeulen SH, Wiencke JK, Walsh KM, Wrensch M, Rice T, Turnbull C, Litchfield K, Paternoster L, Standl M, Abecasis GR, SanGiovanni JP, Li Y, Mijatovic V, Sapkota Y, Low SK, Zondervan KT, Montgomery GW, Nyholt DR, van Heel DA, Hunt K, Arking DE, Ashar FN, Sotoodehnia N, Woo D, Rosand J, Comeau ME, Brown WM, Silverman EK, Hokanson JE, Cho MH, Hui J, Ferreira MA, Thompson PJ, Morrison AC, Felix JF, Smith NL, Christiano AM, Petukhova L, Betz RC, Fan X, Zhang X, Zhu C, Langefeld CD, Thompson SD, Wang F, Lin X, Schwartz DA, Fingerlin T, Rotter JI, Cotch MF, Jensen RA, Munz M, Dommisch H, Schaefer AS, Han F, Ollila HM, Hillary RP, Albagha O, Ralston SH, Zeng C, Zheng W, Shu XO, Reis A, Uebe S, Huffmeier U, Kawamura Y, Otowa T, Sasaki T, Hibberd ML, Davila S, Xie G, Siminovitch K, Bei JX, Zeng YX, Forsti A, Chen B, Landi S, Franke A, Fischer A, Ellinghaus D, Flores C, Noth I, Ma SF, Foo JN, Liu J, Kim JW, Cox DG, Delattre O, Mirabeau O, Skibola CF, Tang CS, Garcia-Barcelo M, Chang KP, Su WH, Chang YS, Martin NG, Gordon S, Wade TD, Lee C, Kubo M, Cha PC, Nakamura Y, Levy D, Kimura M, Hwang SJ, Hunt S, Spector T, Soranzo N, Manichaikul AW, Barr RG, Kahali B, Speliotes E, Yerges-Armstrong LM, Cheng CY, Jonas JB, Wong TY, Fogh I, Lin K, Powell JF, Rice K, Relton CL, Martin RM, Davey Smith G (2017) Association between telomere length and risk of cancer and non-neoplastic diseases: a mendelian randomization study. JAMA Oncol 3:636–651PubMedGoogle Scholar
  55. Heaphy CM, Gaonkar G, Peskoe SB, Joshu CE, De Marzo AM, Lucia MS, Goodman PJ, Lippman SM, Thompson IM Jr, Platz EA, Meeker AK (2015) Prostate stromal cell telomere shortening is associated with risk of prostate cancer in the placebo arm of the prostate cancer prevention trial. Prostate 75:1160–1166PubMedPubMedCentralGoogle Scholar
  56. Helby J, Nordestgaard BG, Benfield T, Bojesen SE (2017) Shorter leukocyte telomere length is associated with higher risk of infections: a prospective study of 75,309 individuals from the general population. Haematologica 102:1457–1465PubMedPubMedCentralGoogle Scholar
  57. Henriques CM, Carneiro MC, Tenente IM, Jacinto A, Ferreira MG (2013) Telomerase is required for zebrafish lifespan. PLoS Genet 9:e1003214PubMedPubMedCentralGoogle Scholar
  58. Heun P, Taddei A, Gasser SM (2001) From snapshots to moving pictures: new perspectives on nuclear organization. Trends Cell Biol 11:519–525PubMedGoogle Scholar
  59. Hewitt G, Jurk D, Marques FD, Correia-Melo C, Hardy T, Gackowska A, Anderson R, Taschuk M, Mann J, Passos JF (2012) Telomeres are favoured targets of a persistent DNA damage response in ageing and stress-induced senescence. Nat Commun 3:708PubMedPubMedCentralGoogle Scholar
  60. Hill JM, Quenelle DC, Cardin RD, Vogel JL, Clement C, Bravo FJ, Foster TP, Bosch-Marce M, Raja P, Lee JS, Bernstein DI, Krause PR, Knipe DM, Kristie TM (2014) Inhibition of LSD1 reduces herpesvirus infection, shedding, and recurrence by promoting epigenetic suppression of viral genomes. Sci Transl Med 6:265ra169PubMedPubMedCentralGoogle Scholar
  61. Hu X, Dutta P, Tsurumi A, Li J, Wang J, Land H, Li WX (2013) Unphosphorylated STAT5A stabilizes heterochromatin and suppresses tumor growth. Proc Natl Acad Sci USA 110:10213–10218PubMedGoogle Scholar
  62. Hu Z, Chen K, Xia Z, Chavez M, Pal S, Seol JH, Chen CC, Li W, Tyler JK (2014) Nucleosome loss leads to global transcriptional up-regulation and genomic instability during yeast aging. Genes Dev 28:396–408PubMedPubMedCentralGoogle Scholar
  63. Ide S, Miyazaki T, Maki H, Kobayashi T (2010) Abundance of ribosomal RNA gene copies maintains genome integrity. Science (New York, NY) 327:693–696Google Scholar
  64. Ilmonen P, Kotrschal A, Penn DJ (2008) Telomere attrition due to infection. PLoS ONE 3:e2143PubMedPubMedCentralGoogle Scholar
  65. Ishikawa N, Nakamura K, Izumiyama-Shimomura N, Aida J, Ishii A, Goto M, Ishikawa Y, Asaka R, Matsuura M, Hatamochi A, Kuroiwa M, Takubo K (2011) Accelerated in vivo epidermal telomere loss in Werner syndrome. Aging 3:417–429PubMedPubMedCentralGoogle Scholar
  66. Ivanov A, Pawlikowski J, Manoharan I, van Tuyn J, Nelson DM, Rai TS, Shah PP, Hewitt G, Korolchuk VI, Passos JF, Wu H, Berger SL, Adams PD (2013) Lysosome-mediated processing of chromatin in senescence. J Cell Biol 202:129–143PubMedPubMedCentralGoogle Scholar
  67. Jaiswal S, Fontanillas P, Flannick J, Manning A, Grauman PV, Mar BG, Lindsley RC, Mermel CH, Burtt N, Chavez A, Higgins JM, Moltchanov V, Kuo FC, Kluk MJ, Henderson B, Kinnunen L, Koistinen HA, Ladenvall C, Getz G, Correa A, Banahan BF, Gabriel S, Kathiresan S, Stringham HM, McCarthy MI, Boehnke M, Tuomilehto J, Haiman C, Groop L, Atzmon G, Wilson JG, Neuberg D, Altshuler D, Ebert BL (2014) Age-related clonal hematopoiesis associated with adverse outcomes. N Engl J Med 371:2488–2498PubMedPubMedCentralGoogle Scholar
  68. Jin C, Li J, Green CD, Yu X, Tang X, Han D, Xian B, Wang D, Huang X, Cao X, Yan Z, Hou L, Liu J, Shukeir N, Khaitovich P, Chen CD, Zhang H, Jenuwein T, Han JD (2011) Histone demethylase UTX-1 regulates C. elegans life span by targeting the insulin/IGF-1 signaling pathway. Cell Metab 14:161–172PubMedGoogle Scholar
  69. Johnson R, Strehler BL (1972) Loss of genes coding for ribosomal RNA in ageing brain cells. Nature 240:412–414PubMedGoogle Scholar
  70. Johnson FB, Marciniak RA, Guarente L (1998) Telomeres, the nucleolus and aging. Curr Opin Cell Biol 10:332–338PubMedGoogle Scholar
  71. Jung ES, Choi H, Song H, Hwang YJ, Kim A, Ryu H, Mook-Jung I (2016) p53-dependent SIRT6 expression protects Abeta42-induced DNA damage. Sci Rep 6:25628PubMedPubMedCentralGoogle Scholar
  72. Kanfi Y, Naiman S, Amir G, Peshti V, Zinman G, Nahum L, Bar-Joseph Z, Cohen HY (2012) The sirtuin SIRT6 regulates lifespan in male mice. Nature 483:218–221Google Scholar
  73. Kobayashi T (2011a) How does genome instability affect lifespan?: Roles of rDNA and telomeres. Genes Cells Devoted Mol Cell Mech 16:617–624Google Scholar
  74. Kobayashi T (2011b) Regulation of ribosomal RNA gene copy number and its role in modulating genome integrity and evolutionary adaptability in yeast. Cell Mol Life Sci CMLS 68:1395–1403PubMedGoogle Scholar
  75. Kobayashi T (2014) Ribosomal RNA gene repeats, their stability and cellular senescence. Proc Jpn Acad Ser B Phys Biol Sci 90:119–129PubMedPubMedCentralGoogle Scholar
  76. Koks S, Dogan S, Tuna BG, Gonzalez-Navarro H, Potter P, Vandenbroucke RE (2016) Mouse models of ageing and their relevance to disease. Mech Ageing Dev 160:41–53PubMedGoogle Scholar
  77. Kwan EX, Foss EJ, Tsuchiyama S, Alvino GM, Kruglyak L, Kaeberlein M, Raghuraman MK, Brewer BJ, Kennedy BK, Bedalov A (2013) A natural polymorphism in rDNA replication origins links origin activation with calorie restriction and lifespan. PLoS Genet 9:e1003329PubMedPubMedCentralGoogle Scholar
  78. Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, Devon K, Dewar K, Doyle M, FitzHugh W, Funke R, Gage D, Harris K, Heaford A, Howland J, Kann L, Lehoczky J, LeVine R, McEwan P, McKernan K, Meldrim J, Mesirov JP, Miranda C, Morris W, Naylor J, Raymond C, Rosetti M, Santos R, Sheridan A, Sougnez C, Stange-Thomann N, Stojanovic N, Subramanian A, Wyman D, Rogers J, Sulston J, Ainscough R, Beck S, Bentley D, Burton J, Clee C, Carter N, Coulson A, Deadman R, Deloukas P, Dunham A, Dunham I, Durbin R, French L, Grafham D, Gregory S, Hubbard T, Humphray S, Hunt A, Jones M, Lloyd C, McMurray A, Matthews L, Mercer S, Milne S, Mullikin JC, Mungall A, Plumb R, Ross M, Shownkeen R, Sims S, Waterston RH, Wilson RK, Hillier LW, McPherson JD, Marra MA, Mardis ER, Fulton LA, Chinwalla AT, Pepin KH, Gish WR, Chissoe SL, Wendl MC, Delehaunty KD, Miner TL, Delehaunty A, Kramer JB, Cook LL, Fulton RS, Johnson DL, Minx PJ, Clifton SW, Hawkins T, Branscomb E, Predki P, Richardson P, Wenning S, Slezak T, Doggett N, Cheng JF, Olsen A, Lucas S, Elkin C, Uberbacher E, Frazier M, Gibbs RA, Muzny DM, Scherer SE, Bouck JB, Sodergren EJ, Worley KC, Rives CM, Gorrell JH, Metzker ML, Naylor SL, Kucherlapati RS, Nelson DL, Weinstock GM, Sakaki Y, Fujiyama A, Hattori M, Yada T, Toyoda A, Itoh T, Kawagoe C, Watanabe H, Totoki Y, Taylor T, Weissenbach J, Heilig R, Saurin W, Artiguenave F, Brottier P, Bruls T, Pelletier E, Robert C, Wincker P, Smith DR, Doucette-Stamm L, Rubenfield M, Weinstock K, Lee HM, Dubois J, Rosenthal A, Platzer M, Nyakatura G, Taudien S, Rump A, Yang H, Yu J, Wang J, Huang G, Gu J, Hood L, Rowen L, Madan A, Qin S, Davis RW, Federspiel NA, Abola AP, Proctor MJ, Myers RM, Schmutz J, Dickson M, Grimwood J, Cox DR, Olson MV, Kaul R, Raymond C, Shimizu N, Kawasaki K, Minoshima S, Evans GA, Athanasiou M, Schultz R, Roe BA, Chen F, Pan H, Ramser J, Lehrach H, Reinhardt R, McCombie WR, de la Bastide M, Dedhia N, Blocker H, Hornischer K, Nordsiek G, Agarwala R, Aravind L, Bailey JA, Bateman A, Batzoglou S, Birney E, Bork P, Brown DG, Burge CB, Cerutti L, Chen HC, Church D, Clamp M, Copley RR, Doerks T, Eddy SR, Eichler EE, Furey TS, Galagan J, Gilbert JG, Harmon C, Hayashizaki Y, Haussler D, Hermjakob H, Hokamp K, Jang W, Johnson LS, Jones TA, Kasif S, Kaspryzk A, Kennedy S, Kent WJ, Kitts P, Koonin EV, Korf I, Kulp D, Lancet D, Lowe TM, McLysaght A, Mikkelsen T, Moran JV, Mulder N, Pollara VJ, Ponting CP, Schuler G, Schultz J, Slater G, Smit AF, Stupka E, Szustakowski J, Thierry-Mieg D, Thierry-Mieg J, Wagner L, Wallis J, Wheeler R, Williams A, Wolf YI, Wolfe KH, Yang SP, Yeh RF, Collins F, Guyer MS, Peterson J, Felsenfeld A, Wetterstrand KA, Patrinos A, Morgan MJ, de Jong P, Catanese JJ, Osoegawa K, Shizuya H, Choi S, Chen YJ (2001) Initial sequencing and analysis of the human genome. Nature 409:860–921PubMedPubMedCentralGoogle Scholar
  79. Larson K, Yan SJ, Tsurumi A, Liu J, Zhou J, Gaur K, Guo D, Eickbush TH, Li WX (2012) Heterochromatin formation promotes longevity and represses ribosomal RNA synthesis. PLoS Genet 8:e1002473PubMedPubMedCentralGoogle Scholar
  80. Laurie CC, Laurie CA, Rice K, Doheny KF, Zelnick LR, McHugh CP, Ling H, Hetrick KN, Pugh EW, Amos C, Wei Q, Wang LE, Lee JE, Barnes KC, Hansel NN, Mathias R, Daley D, Beaty TH, Scott AF, Ruczinski I, Scharpf RB, Bierut LJ, Hartz SM, Landi MT, Freedman ND, Goldin LR, Ginsburg D, Li J, Desch KC, Strom SS, Blot WJ, Signorello LB, Ingles SA, Chanock SJ, Berndt SI, Le Marchand L, Henderson BE, Monroe KR, Heit JA, de Andrade M, Armasu SM, Regnier C, Lowe WL, Hayes MG, Marazita ML, Feingold E, Murray JC, Melbye M, Feenstra B, Kang JH, Wiggs JL, Jarvik GP, McDavid AN, Seshan VE, Mirel DB, Crenshaw A, Sharopova N, Wise A, Shen J, Crosslin DR, Levine DM, Zheng X, Udren JI, Bennett S, Nelson SC, Gogarten SM, Conomos MP, Heagerty P, Manolio T, Pasquale LR, Haiman CA, Caporaso N, Weir BS (2012) Detectable clonal mosaicism from birth to old age and its relationship to cancer. Nat Genet 44:642–650PubMedPubMedCentralGoogle Scholar
  81. Ley TJ, Mardis ER, Ding L, Fulton B, McLellan MD, Chen K, Dooling D, Dunford-Shore BH, McGrath S, Hickenbotham M, Cook L, Abbott R, Larson DE, Koboldt DC, Pohl C, Smith S, Hawkins A, Abbott S, Locke D, Hillier LW, Miner T, Fulton L, Magrini V, Wylie T, Glasscock J, Conyers J, Sander N, Shi X, Osborne JR, Minx P, Gordon D, Chinwalla A, Zhao Y, Ries RE, Payton JE, Westervelt P, Tomasson MH, Watson M, Baty J, Ivanovich J, Heath S, Shannon WD, Nagarajan R, Walter MJ, Link DC, Graubert TA, DiPersio JF, Wilson RK (2008) DNA sequencing of a cytogenetically normal acute myeloid leukaemia genome. Nature 456:66–72PubMedPubMedCentralGoogle Scholar
  82. Lezhava T (2001) Chromosome and aging: genetic conception of aging. Biogerontology 2:253–260PubMedGoogle Scholar
  83. Lezhava T, Jokhadze T (2007) Activation of pericentromeric and telomeric heterochromatin in cultured lymphocytes from old individuals. Ann N Y Acad Sci 1100:387–399PubMedGoogle Scholar
  84. Lidzbarsky G, Gutman D, Shekhidem HA, Sharvit L, Atzmon G (2018) Genomic instabilities, cellular senescence, and aging: in vitro, in vivo and aging-like human syndromes. Front Med 5:104Google Scholar
  85. Lim HG, Suzuki K, Cooper DA, Kelleher AD (2008) Promoter-targeted siRNAs induce gene silencing of simian immunodeficiency virus (SIV) infection in vitro. Mol Ther J Am Soc Gene Ther 16:565–570Google Scholar
  86. Lindstrom MS, Jurada D, Bursac S, Orsolic I, Bartek J, Volarevic S (2018) Nucleolus as an emerging hub in maintenance of genome stability and cancer pathogenesis. Oncogene 37:2351–2366PubMedPubMedCentralGoogle Scholar
  87. Liu GH, Barkho BZ, Ruiz S, Diep D, Qu J, Yang SL, Panopoulos AD, Suzuki K, Kurian L, Walsh C, Thompson J, Boue S, Fung HL, Sancho-Martinez I, Zhang K, Yates J 3rd, Izpisua Belmonte JC (2011) Recapitulation of premature ageing with iPSCs from Hutchinson-Gilford progeria syndrome. Nature 472:221–225PubMedPubMedCentralGoogle Scholar
  88. Lopez-Lluch G, Rattan SI (2015) Facing challenges in an ageing world. Biogerontology 16:567–568PubMedGoogle Scholar
  89. Lopez-Otin C, Blasco MA, Partridge L, Serrano M, Kroemer G (2013) The hallmarks of aging. Cell 153:1194–1217PubMedPubMedCentralGoogle Scholar
  90. Lu KL, Nelson JO, Watase GJ, Warsinger-Pepe N, Yamashita YM (2018) Transgenerational dynamics of rDNA copy number in Drosophila male germline stem cells. eLife 7:e32421PubMedPubMedCentralGoogle Scholar
  91. Ma H, Zhou Z, Wei S, Liu Z, Pooley KA, Dunning AM, Svenson U, Roos G, Hosgood HD 3rd, Shen M, Wei Q (2011) Shortened telomere length is associated with increased risk of cancer: a meta-analysis. PLoS ONE 6:e20466PubMedPubMedCentralGoogle Scholar
  92. Ma LJ, Wang XY, Duan M, Liu LZ, Shi JY, Dong LQ, Yang LX, Wang ZC, Ding ZB, Ke AW, Cao Y, Zhang XM, Zhou J, Fan J, Gao Q (2017) Telomere length variation in tumor cells and cancer-associated fibroblasts: potential biomarker for hepatocellular carcinoma. J Pathol 243:407–417PubMedPubMedCentralGoogle Scholar
  93. Maciejowski J, de Lange T (2017) Telomeres in cancer: tumour suppression and genome instability. Nat Rev Mol Cell Biol 18:175–186PubMedPubMedCentralGoogle Scholar
  94. Mattick JS (2011) The central role of RNA in human development and cognition. FEBS Lett 585:1600–1616PubMedGoogle Scholar
  95. Maures TJ, Greer EL, Hauswirth AG, Brunet A (2011) The H3K27 demethylase UTX-1 regulates C. elegans lifespan in a germline-independent, insulin-dependent manner. Aging Cell 10:980–990PubMedPubMedCentralGoogle Scholar
  96. Martincorena I, Campbell PJ (2015) Somatic mutation in cancer and normal cells. Science (New York, NY) 349:1483–1489Google Scholar
  97. McIlrath J, Bouffler SD, Samper E, Cuthbert A, Wojcik A, Szumiel I, Bryant PE, Riches AC, Thompson A, Blasco MA, Newbold RF, Slijepcevic P (2001) Telomere length abnormalities in mammalian radiosensitive cells. Can Res 61:912–915Google Scholar
  98. McStay B (2016) Nucleolar organizer regions: genomic ‘dark matter’ requiring illumination. Genes Dev 30:1598–1610PubMedPubMedCentralGoogle Scholar
  99. Meeker AK (2018) Cancer telomeres and white crows. Am J Clin Exp Urol 6:93–100PubMedPubMedCentralGoogle Scholar
  100. Meeker AK, Hicks JL, Platz EA, March GE, Bennett CJ, Delannoy MJ, De Marzo AM (2002) Telomere shortening is an early somatic DNA alteration in human prostate tumorigenesis. Can Res 62:6405–6409Google Scholar
  101. Meeker AK, Hicks JL, Gabrielson E, Strauss WM, De Marzo AM, Argani P (2004a) Telomere shortening occurs in subsets of normal breast epithelium as well as in situ and invasive carcinoma. Am J Pathol 164:925–935PubMedPubMedCentralGoogle Scholar
  102. Meeker AK, Hicks JL, Iacobuzio-Donahue CA, Montgomery EA, Westra WH, Chan TY, Ronnett BM, De Marzo AM (2004b) Telomere length abnormalities occur early in the initiation of epithelial carcinogenesis. Clin Cancer Res An Off J Am Assoc Cancer Res 10:3317–3326Google Scholar
  103. Mostoslavsky R, Chua KF, Lombard DB, Pang WW, Fischer MR, Gellon L, Liu P, Mostoslavsky G, Franco S, Murphy MM, Mills KD, Patel P, Hsu JT, Hong AL, Ford E, Cheng HL, Kennedy C, Nunez N, Bronson R, Frendewey D, Auerbach W, Valenzuela D, Karow M, Hottiger MO, Hursting S, Barrett JC, Guarente L, Mulligan R, Demple B, Yancopoulos GD, Alt FW (2006) Genomic instability and aging-like phenotype in the absence of mammalian SIRT6. Cell 124:315–329Google Scholar
  104. Mou F, Wills EG, Park R, Baines JD (2008) Effects of lamin A/C, lamin B1, and viral US3 kinase activity on viral infectivity, virion egress, and the targeting of herpes simplex virus U(L)34-encoded protein to the inner nuclear membrane. J Virol 82:8094–8104PubMedPubMedCentralGoogle Scholar
  105. Mourkioti F, Kustan J, Kraft P, Day JW, Zhao MM, Kost-Alimova M, Protopopov A, DePinho RA, Bernstein D, Meeker AK, Blau HM (2013) Role of telomere dysfunction in cardiac failure in Duchenne muscular dystrophy. Nat Cell Biol 15:895–904PubMedPubMedCentralGoogle Scholar
  106. Muezzinler A, Zaineddin AK, Brenner H (2013) A systematic review of leukocyte telomere length and age in adults. Ageing Res Rev 12:509–519PubMedGoogle Scholar
  107. Najarro K, Nguyen H, Chen G, Xu M, Alcorta S, Yao X, Zukley L, Metter EJ, Truong T, Lin Y, Li H, Oelke M, Xu X, Ling SM, Longo DL, Schneck J, Leng S, Ferrucci L, Weng NP (2015) Telomere length as an indicator of the robustness of B- and T-cell response to influenza in older adults. J Infect Dis 212:1261–1269PubMedPubMedCentralGoogle Scholar
  108. Needham BL, Rehkopf D, Adler N, Gregorich S, Lin J, Blackburn EH, Epel ES (2015) Leukocyte telomere length and mortality in the National Health and Nutrition Examination Survey, 1999–2002. Epidemiology (Cambridge, Mass) 26:528–535Google Scholar
  109. O’Sullivan RJ, Kubicek S, Schreiber SL, Karlseder J (2010) Reduced histone biosynthesis and chromatin changes arising from a damage signal at telomeres. Nat Struct Mol Biol 17:1218–1225PubMedPubMedCentralGoogle Scholar
  110. Pageau GJ, Hall LL, Ganesan S, Livingston DM, Lawrence JB (2007) The disappearing Barr body in breast and ovarian cancers. Nat Rev Cancer 7:628–633PubMedGoogle Scholar
  111. Paredes S, Maggert KA (2009) Ribosomal DNA contributes to global chromatin regulation. Proc Natl Acad Sci USA 106:17829–17834PubMedGoogle Scholar
  112. Parks MM, Kurylo CM, Dass RA, Bojmar L, Lyden D, Vincent CT, Blanchard SC (2018) Variant ribosomal RNA alleles are conserved and exhibit tissue-specific expression. Sci Adv 4:eaao0665PubMedPubMedCentralGoogle Scholar
  113. Peters AH, O’Carroll D, Scherthan H, Mechtler K, Sauer S, Schofer C, Weipoltshammer K, Pagani M, Lachner M, Kohlmaier A, Opravil S, Doyle M, Sibilia M, Jenuwein T (2001) Loss of the Suv39h histone methyltransferases impairs mammalian heterochromatin and genome stability. Cell 107:323–337Google Scholar
  114. Pleasance ED, Cheetham RK, Stephens PJ, McBride DJ, Humphray SJ, Greenman CD, Varela I, Lin ML, Ordonez GR, Bignell GR, Ye K, Alipaz J, Bauer MJ, Beare D, Butler A, Carter RJ, Chen L, Cox AJ, Edkins S, Kokko-Gonzales PI, Gormley NA, Grocock RJ, Haudenschild CD, Hims MM, James T, Jia M, Kingsbury Z, Leroy C, Marshall J, Menzies A, Mudie LJ, Ning Z, Royce T, Schulz-Trieglaff OB, Spiridou A, Stebbings LA, Szajkowski L, Teague J, Williamson D, Chin L, Ross MT, Campbell PJ, Bentley DR, Futreal PA, Stratton MR (2010) A comprehensive catalogue of somatic mutations from a human cancer genome. Nature 463:191–196Google Scholar
  115. Postepska-Igielska A, Krunic D, Schmitt N, Greulich-Bode KM, Boukamp P, Grummt I (2013) The chromatin remodelling complex NoRC safeguards genome stability by heterochromatin formation at telomeres and centromeres. EMBO Rep 14:704–710PubMedPubMedCentralGoogle Scholar
  116. Qiu GH (2015) Protection of the genome and central protein-coding sequences by non-coding DNA against DNA damage from radiation. Mutat Res Rev Mutat Res 764:108–117PubMedGoogle Scholar
  117. Qiu GH (2016) Genome defense against exogenous nucleic acids in eukaryotes by non-coding DNA occurs through CRISPR-like mechanisms in the cytosol and the bodyguard protection in the nucleus. Mutat Res Rev Mutat Res 767:31–41PubMedGoogle Scholar
  118. Qiu GH, Yang X, Zheng X, Huang C (2017) The eukaryotic genome is structurally and functionally more like a social insect colony than a book. Epigenomics 9:1469–1483PubMedGoogle Scholar
  119. Qiu GH, Huang C, Zheng X, Yang X (2018) The protective function of noncoding DNA in genome defense of eukaryotic male germ cells. Epigenomics 10:499–517PubMedGoogle Scholar
  120. Rampazzo E, Bertorelle R, Serra L, Terrin L, Candiotto C, Pucciarelli S, Del Bianco P, Nitti D, De Rossi A (2010) Relationship between telomere shortening, genetic instability, and site of tumour origin in colorectal cancers. Br J Cancer 102:1300–1305PubMedPubMedCentralGoogle Scholar
  121. Ramsey MJ, Moore DH 2nd, Briner JF, Lee DA, Olsen L, Senft JR, Tucker JD (1995) The effects of age and lifestyle factors on the accumulation of cytogenetic damage as measured by chromosome painting. Mutat Res 338:95–106PubMedGoogle Scholar
  122. Rattan SI (2012) Biogerontology: from here to where? The Lord Cohen Medal Lecture-2011. Biogerontology 13:83–91PubMedGoogle Scholar
  123. Rattan SIS (2018) Biogerontology: research status, challenges and opportunities. Acta Bio-Medica: Atenei Parm 89:291–301Google Scholar
  124. Reichel A, Stilp AC, Scherer M, Reuter N, Lukassen S, Kasmapour B, Schreiner S, Cicin-Sain L, Winterpacht A, Stamminger T (2018) The chromatin remodeling factor SPOC1 acts as a cellular restriction factor against human cytomegalovirus by repressing the major immediate-early promoter. J Virol 92:e00342PubMedPubMedCentralGoogle Scholar
  125. Ribezzo F, Shiloh Y, Schumacher B (2016) Systemic DNA damage responses in aging and diseases. Semin Cancer Biol 37–38:26–35PubMedPubMedCentralGoogle Scholar
  126. Richard GF, Kerrest A, Dujon B (2008) Comparative genomics and molecular dynamics of DNA repeats in eukaryotes. Microbiol Mol Biol Rev MMBR 72:686–727PubMedGoogle Scholar
  127. Risques RA, Kennedy SR (2018) Aging and the rise of somatic cancer-associated mutations in normal tissues. PLoS Genet 14:e1007108PubMedPubMedCentralGoogle Scholar
  128. Robinson AR, Yousefzadeh MJ, Rozgaja TA, Wang J, Li X, Tilstra JS, Feldman CH, Gregg SQ, Johnson CH, Skoda EM, Frantz MC, Bell-Temin H, Pope-Varsalona H, Gurkar AU, Nasto LA, Robinson RAS, Fuhrmann-Stroissnigg H, Czerwinska J, McGowan SJ, Cantu-Medellin N, Harris JB, Maniar S, Ross MA, Trussoni CE, LaRusso NF, Cifuentes-Pagano E, Pagano PJ, Tudek B, Vo NV, Rigatti LH, Opresko PL, Stolz DB, Watkins SC, Burd CE, Croix CMS, Siuzdak G, Yates NA, Robbins PD, Wang Y, Wipf P, Kelley EE, Niedernhofer LJ (2018) Spontaneous DNA damage to the nuclear genome promotes senescence, redox imbalance and aging. Redox Biol 17:259–273PubMedPubMedCentralGoogle Scholar
  129. Rode L, Nordestgaard BG, Bojesen SE (2015) Peripheral blood leukocyte telomere length and mortality among 64,637 individuals from the general population. J Natl Cancer Inst 107:djv074PubMedGoogle Scholar
  130. Rubio MA, Kim SH, Campisi J (2002) Reversible manipulation of telomerase expression and telomere length. Implications for the ionizing radiation response and replicative senescence of human cells. J Biol Chem 277:28609–28617PubMedGoogle Scholar
  131. Rudolph KL, Chang S, Lee HW, Blasco M, Gottlieb GJ, Greider C, DePinho RA (1999) Longevity, stress response, and cancer in aging telomerase-deficient mice. Cell 96:701–712PubMedGoogle Scholar
  132. Sahin E, Colla S, Liesa M, Moslehi J, Muller FL, Guo M, Cooper M, Kotton D, Fabian AJ, Walkey C, Maser RS, Tonon G, Foerster F, Xiong R, Wang YA, Shukla SA, Jaskelioff M, Martin ES, Heffernan TP, Protopopov A, Ivanova E, Mahoney JE, Kost-Alimova M, Perry SR, Bronson R, Liao R, Mulligan R, Shirihai OS, Chin L, DePinho RA (2011) Telomere dysfunction induces metabolic and mitochondrial compromise. Nature 470:359–365PubMedPubMedCentralGoogle Scholar
  133. Saini N, Gordenin DA (2018) Somatic mutation load and spectra: a record of DNA damage and repair in healthy human cells. Environ Mol Mutagen 59:672–686PubMedPubMedCentralGoogle Scholar
  134. Sato K, Imai T, Okayasu R, Shimokawa T (2014) Heterochromatin domain number correlates with X-ray and carbon-ion radiation resistance in cancer cells. Radiat Res 182:408–419PubMedGoogle Scholar
  135. Scaffidi P, Misteli T (2006) Lamin A-dependent nuclear defects in human aging. Science (New York, NY) 312:1059–1063Google Scholar
  136. Scherthan H (2007) Telomere attachment and clustering during meiosis. Cell Mol Life Sci CMLS 64:117–124PubMedGoogle Scholar
  137. Schuster-Bockler B, Lehner B (2012) Chromatin organization is a major influence on regional mutation rates in human cancer cells. Nature 488:504–507Google Scholar
  138. Sen P, Shah PP, Nativio R, Berger SL (2016) Epigenetic mechanisms of longevity and aging. Cell 166:822–839PubMedPubMedCentralGoogle Scholar
  139. Serebryannyy L, Misteli T (2018) Protein sequestration at the nuclear periphery as a potential regulatory mechanism in premature aging. J Cell Biol 217:21–37PubMedPubMedCentralGoogle Scholar
  140. Shamanna RA, Croteau DL, Lee JH, Bohr VA (2017) Recent advances in understanding werner syndrome. F1000Research 6:1779PubMedPubMedCentralGoogle Scholar
  141. Sharifi-Sanjani M, Oyster NM, Tichy ED, Bedi KC Jr, Harel O, Margulies KB, Mourkioti F (2017) Cardiomyocyte-specific telomere shortening is a distinct signature of heart failure in humans. J Am Heart Assoc 6:e005086PubMedPubMedCentralGoogle Scholar
  142. Shumaker DK, Dechat T, Kohlmaier A, Adam SA, Bozovsky MR, Erdos MR, Eriksson M, Goldman AE, Khuon S, Collins FS, Jenuwein T, Goldman RD (2006) Mutant nuclear lamin A leads to progressive alterations of epigenetic control in premature aging. Proc Natl Acad Sci USA 103:8703–8708PubMedGoogle Scholar
  143. Sinclair DA, Guarente L (1997) Extrachromosomal rDNA circles—a cause of aging in yeast. Cell 91:1033–1042PubMedPubMedCentralGoogle Scholar
  144. Singh A, Palanichamy JK, Ramalingam P, Kassab MA, Bhagat M, Andrabi R, Luthra K, Sinha S, Chattopadhyay P (2014) Long-term suppression of HIV-1C virus production in human peripheral blood mononuclear cells by LTR heterochromatization with a short double-stranded RNA. J Antimicrob Chemother 69:404–415PubMedGoogle Scholar
  145. Song S, Johnson FB (2018) Epigenetic mechanisms impacting aging: a focus on histone levels and telomeres. Genes 9:201PubMedCentralGoogle Scholar
  146. Stults DM, Killen MW, Pierce HH, Pierce AJ (2008) Genomic architecture and inheritance of human ribosomal RNA gene clusters. Genome Res 18:13–18PubMedPubMedCentralGoogle Scholar
  147. Stults DM, Killen MW, Williamson EP, Hourigan JS, Vargas HD, Arnold SM, Moscow JA, Pierce AJ (2009) Human rRNA gene clusters are recombinational hotspots in cancer. Can Res 69:9096–9104Google Scholar
  148. Stumpferl SW, Brand SE, Jiang JC, Korona B, Tiwari A, Dai J, Seo JG, Jazwinski SM (2012) Natural genetic variation in yeast longevity. Genome Res 22:1963–1973PubMedPubMedCentralGoogle Scholar
  149. Taddei A, Gasser SM (2012) Structure and function in the budding yeast nucleus. Genetics 192:107–129PubMedPubMedCentralGoogle Scholar
  150. Taft RJ, Pheasant M, Mattick JS (2007) The relationship between non-protein-coding DNA and eukaryotic complexity. BioEssays News Rev Mol Cell Dev Biol 29:288–299Google Scholar
  151. Tahara T, Shibata T, Kawamura T, Horiguchi N, Okubo M, Nakano N, Ishizuka T, Nagasaka M, Nakagawa Y, Ohmiya N (2016) Telomere length shortening in gastric mucosa is a field effect associated with increased risk of gastric cancer. Virchows Arch Int J Pathol 469:19–24Google Scholar
  152. Takubo K, Aida J, Izumiyama-Shimomura N, Ishikawa N, Sawabe M, Kurabayashi R, Shiraishi H, Arai T, Nakamura K (2010) Changes of telomere length with aging. Geriatr Gerontol Int 10(Suppl 1):S197–S206PubMedGoogle Scholar
  153. Tasselli L, Zheng W, Chua KF (2017) SIRT6: novel mechanisms and links to aging and disease. Trends Endocrinol Metab TEM 28:168–185PubMedGoogle Scholar
  154. Terai M, Izumiyama-Shimomura N, Aida J, Ishikawa N, Sawabe M, Arai T, Fujiwara M, Ishii A, Nakamura K, Takubo K (2013) Association of telomere shortening in myocardium with heart weight gain and cause of death. Sci Rep 3:2401PubMedPubMedCentralGoogle Scholar
  155. Theodoris CV, Mourkioti F, Huang Y, Ranade SS, Liu L, Blau HM, Srivastava D (2017) Long telomeres protect against age-dependent cardiac disease caused by NOTCH1 haploinsufficiency. J Clin Investig 127:1683–1688PubMedGoogle Scholar
  156. Thompson LH (2012) Recognition, signaling, and repair of DNA double-strand breaks produced by ionizing radiation in mammalian cells: the molecular choreography. Mutat Res 751:158–246PubMedGoogle Scholar
  157. Tomasetti C, Vogelstein B, Parmigiani G (2013) Half or more of the somatic mutations in cancers of self-renewing tissues originate prior to tumor initiation. Proc Natl Acad Sci USA 110:1999–2004PubMedGoogle Scholar
  158. Torres-Rosell J, Sunjevaric I, De Piccoli G, Sacher M, Eckert-Boulet N, Reid R, Jentsch S, Rothstein R, Aragon L, Lisby M (2007) The Smc5-Smc6 complex and SUMO modification of Rad52 regulates recombinational repair at the ribosomal gene locus. Nat Cell Biol 9:923–931PubMedGoogle Scholar
  159. Tsurumi A, Li WX (2012) Global heterochromatin loss: a unifying theory of aging? Epigenetics Off J DNA Methylation Soc 7:680–688Google Scholar
  160. Tucker JD, Spruill MD, Ramsey MJ, Director AD, Nath J (1999) Frequency of spontaneous chromosome aberrations in mice: effects of age. Mutat Res 425:135–141PubMedGoogle Scholar
  161. van Sluis M, McStay B (2015) A localized nucleolar DNA damage response facilitates recruitment of the homology-directed repair machinery independent of cell cycle stage. Genes Dev 29:1151–1163PubMedPubMedCentralGoogle Scholar
  162. van Sluis M, McStay B (2017) Nucleolar reorganization in response to rDNA damage. Curr Opin Cell Biol 46:81–86PubMedGoogle Scholar
  163. Varela E, Munoz-Lorente MA, Tejera AM, Ortega S, Blasco MA (2016) Generation of mice with longer and better preserved telomeres in the absence of genetic manipulations. Nat Commun 7:11739PubMedPubMedCentralGoogle Scholar
  164. Vidak S, Foisner R (2016) Molecular insights into the premature aging disease progeria. Histochem Cell Biol 145:401–417PubMedPubMedCentralGoogle Scholar
  165. Vijg J, Dong X, Milholland B, Zhang L (2017) Genome instability: a conserved mechanism of ageing? Essays Biochem 61:305–315PubMedPubMedCentralGoogle Scholar
  166. Villeponteau B (1997) The heterochromatin loss model of aging. Exp Gerontol 32:383–394PubMedGoogle Scholar
  167. Vitiello M, Zullo A, Servillo L, Mancini FP, Borriello A, Giovane A, Della Ragione F, D’Onofrio N, Balestrieri ML (2017) Multiple pathways of SIRT6 at the crossroads in the control of longevity, cancer, and cardiovascular diseases. Ageing Res Rev 35:301–311PubMedGoogle Scholar
  168. Wang M, Lemos B (2017) Ribosomal DNA copy number amplification and loss in human cancers is linked to tumor genetic context, nucleolus activity, and proliferation. PLoS Genet 13:e1006994PubMedPubMedCentralGoogle Scholar
  169. Wang JY, Peng SH, Ning XH, Li T, Liu SJ, Liu JY, Hong BA, Qi NN, Peng X, Zhou BW, Zhang JF, Cai L, Gong K (2017) Shorter telomere length increases age-related tumor risks in von Hippel-Lindau disease patients. Cancer Med 6:2131–2141PubMedPubMedCentralGoogle Scholar
  170. Wang Q, Zhan Y, Pedersen NL, Fang F, Hagg S (2018a) Telomere length and all-cause mortality: a meta-analysis. Ageing Res Rev 48:11–20PubMedGoogle Scholar
  171. Wang Y, Zhao Z, Zhu Z, Li P, Li X, Xue X, Duo J, Ma Y (2018b) Telomere elongation protects heart and lung tissue cells from fatal damage in rats exposed to severe hypoxia. J Physiol Anthropol 37:5PubMedPubMedCentralGoogle Scholar
  172. Wentzensen IM, Mirabello L, Pfeiffer RM, Savage SA (2011) The association of telomere length and cancer: a meta-analysis. Cancer Epidemiol Biomark Prev Publ Am Assoc Cancer Res Cosponsored Am Soc Prev Oncol 20:1238–1250Google Scholar
  173. White RR, Vijg J (2016) Do DNA Double-Strand Breaks Drive Aging? Mol Cell 63:729–738PubMedPubMedCentralGoogle Scholar
  174. Willeit P, Willeit J, Mayr A, Weger S, Oberhollenzer F, Brandstatter A, Kronenberg F, Kiechl S (2010) Telomere length and risk of incident cancer and cancer mortality. JAMA 304:69–75PubMedGoogle Scholar
  175. Willeit P, Willeit J, Kloss-Brandstatter A, Kronenberg F, Kiechl S (2011) Fifteen-year follow-up of association between telomere length and incident cancer and cancer mortality. JAMA 306:42–44PubMedGoogle Scholar
  176. Wong KK, Chang S, Weiler SR, Ganesan S, Chaudhuri J, Zhu C, Artandi SE, Rudolph KL, Gottlieb GJ, Chin L, Alt FW, DePinho RA (2000) Telomere dysfunction impairs DNA repair and enhances sensitivity to ionizing radiation. Nat Genet 26:85–88PubMedGoogle Scholar
  177. Xu B, Li H, Perry JM, Singh VP, Unruh J, Yu Z, Zakari M, McDowell W, Li L, Gerton JL (2017) Ribosomal DNA copy number loss and sequence variation in cancer. PLoS Genet 13:e1006771PubMedPubMedCentralGoogle Scholar
  178. Yamagishi M, Ishida T, Miyake A, Cooper DA, Kelleher AD, Suzuki K, Watanabe T (2009) Retroviral delivery of promoter-targeted shRNA induces long-term silencing of HIV-1 transcription. Microbes Infect/Inst Pasteur 11:500–508Google Scholar
  179. Yan SJ, Lim SJ, Shi S, Dutta P, Li WX (2011) Unphosphorylated STAT and heterochromatin protect genome stability. FASEB J Off Publ Fed Am Soc Exp Biol 25:232–241Google Scholar
  180. Yang M, Prescott J, Poole EM, Rice MS, Kubzansky LD, Idahl A, Lundin E, De Vivo I, Tworoger SS (2017) Prediagnosis leukocyte telomere length and risk of ovarian cancer. Cancer Epidemiol Biomark Prev Publ Am Assoc Cancer Res Cosponsored Am Soc Prev Oncol 26:339–345Google Scholar
  181. Zafiropoulos A, Tsentelierou E, Linardakis M, Kafatos A, Spandidos DA (2005) Preferential loss of 5S and 28S rDNA genes in human adipose tissue during ageing. Int J Biochem Cell Biol 37:409–415PubMedGoogle Scholar
  182. Zanet DL, Thorne A, Singer J, Maan EJ, Sattha B, Le Campion A, Soudeyns H, Pick N, Murray M, Money DM, Cote HC (2014) Association between short leukocyte telomere length and HIV infection in a cohort study: no evidence of a relationship with antiretroviral therapy. Clin Infect Dis Off Publ Infect Dis Soc Am 58:1322–1332Google Scholar
  183. Zhang C, Chen X, Li L, Zhou Y, Wang C, Hou S (2015a) The association between telomere length and cancer prognosis: evidence from a meta-analysis. PLoS ONE 10:e0133174PubMedPubMedCentralGoogle Scholar
  184. Zhang W, Li J, Suzuki K, Qu J, Wang P, Zhou J, Liu X, Ren R, Xu X, Ocampo A, Yuan T, Yang J, Li Y, Shi L, Guan D, Pan H, Duan S, Ding Z, Li M, Yi F, Bai R, Wang Y, Chen C, Yang F, Li X, Wang Z, Aizawa E, Goebl A, Soligalla RD, Reddy P, Esteban CR, Tang F, Liu GH, Belmonte JC (2015b) Aging stem cells. A Werner syndrome stem cell model unveils heterochromatin alterations as a driver of human aging. Science (New York, NY) 348:1160–1163Google Scholar
  185. Zhang D, Qu L, Zhou B, Wang G, Zhou G (2018) Genomic variations in the counterpart normal controls of lung squamous cell carcinomas. Front Med 12:280–288PubMedGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Fujian Provincial Key Laboratory for the Prevention and Control of Animal Infectious Diseases and BiotechnologyLongyan UniversityLongyanPeople’s Republic of China
  2. 2.Key Laboratory of Preventive Veterinary Medicine and BiotechnologyFujian Province Universities, Longyan UniversityLongyanPeople’s Republic of China
  3. 3.College of Life SciencesLongyan UniversityLongyanPeople’s Republic of China

Personalised recommendations