Some naturally occurring compounds that increase longevity and stress resistance in model organisms of aging

  • Darío R. Gómez-Linton
  • Silvestre Alavez
  • Adriana Alarcón-Aguilar
  • Norma E. López-Diazguerrero
  • Mina Konigsberg
  • Laura J. Pérez-FloresEmail author
Review Article


Humans and other organisms show age-related signs of deterioration, which makes aging an interesting process to study. In the present work, we review the anti-aging evidence of several of the most promising natural compounds. Quercetin, rapamycin, resveratrol, spermidine, curcumin or sulforaphane administration increase longevity and stress resistance in model organisms such as yeasts, nematodes, flies and mice. Even more, rapamycin, resveratrol, and curcumin are currently in preclinical tests on the Interventions Testing Program of the National Institute on Aging due to their encouraging results in model organisms. The potential mechanisms underlying the beneficial effects of these compounds are briefly described.


Natural compounds Longevity Stress resistance Aging models Signaling pathways 



We thank to CONACYT and the UAM and its Biotechnology Program [PNPC-001466] for the scholarship [300612] given to DRGL.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Alavez S, Lithgow GJ (2011) A new look at old compounds. Aging 3:338–339. CrossRefPubMedPubMedCentralGoogle Scholar
  2. Alavez S, Lithgow GJ (2012) Pharmacological maintenance of protein homeostasis could postpone age-related disease. Aging Cell 11:187–191. CrossRefPubMedPubMedCentralGoogle Scholar
  3. Alavez S, Vantipalli MC, Zucker DJS, Klang IM, Lithgow GJ (2011) Amyloid-binding compounds maintain protein homeostasis during ageing and extend lifespan. Nature 472:226–229. CrossRefPubMedPubMedCentralGoogle Scholar
  4. Altintas O, Park S, Lee SJ (2016) The role of insulin/IGF-1 signaling in the longevity of model invertebrates, C. elegans and D. melanogaster. BMB Rep 49:81–92CrossRefPubMedPubMedCentralGoogle Scholar
  5. Alugoju P, Janardhanshetty SS, Subaramanian S, Periyasamy L, Dyavaiah M (2018) Quercetin protects yeast Saccharomyces cerevisiae pep4 mutant from oxidative and apoptotic stress and extends chronical lifespan. Curr Microbiol 75:519–530. CrossRefPubMedGoogle Scholar
  6. Alvers AL, Wood MS, Hu D, Kaywell AC, Dunn WA Jr, Aris JP (2009) Autophagy is required for extension of yeast chronological life span by rapamycin. Autophagy 5:847–849CrossRefPubMedPubMedCentralGoogle Scholar
  7. Apfeld J, O’Connor G, McDonagh T, DiStefano PS, Curtis R (2004) The AMP-activated protein kinase AAK-2 links energy levels and insulin-like signals to lifespan in C. elegans. Genes Dev 18:3004–3009. CrossRefPubMedPubMedCentralGoogle Scholar
  8. Argyropoulou A, Aligiannis N, Trougakos IP, Skaltsounis AL (2013) Natural compounds with anti-ageing activity. Nat Prod Rep 30:1412–1437. CrossRefPubMedGoogle Scholar
  9. Ayyadevara S, Balasubramaniam M, Gao Y, Yu LR, Alla R, Shmookler Reis R (2015) Proteins in aggregates functionally impact multiple neurodegenerative disease models by forming proteasome-blocking complexes. Aging Cell 14:35–48. CrossRefPubMedGoogle Scholar
  10. Belinha I, Amorim MA, Rodrigues P, de Freitas V, Moradas-Ferreira P, Mateus N, Costa V (2007) Quercetin increases oxidative stress resistance and longevity in Saccharomyces cerevisiae. J Agric Food Chem 55:2446–2451. CrossRefPubMedGoogle Scholar
  11. Bellé NA, Dalmolin GD, Fonini G, Rubin MA, Rocha JB (2004) Polyamines reduces lipid peroxidation induced by different pro-oxidant agents. Brain Res 1008:245–251. CrossRefPubMedGoogle Scholar
  12. Bhullar KS, Hubbard BP (2015) Lifespan and healthspan extension by resveratrol. Biochim Biophys Acta 1852:1209–1218. CrossRefPubMedGoogle Scholar
  13. Bjedov I, Toivonen JM, Kerr F, Slack C, Jacobson J, Foley A, Partridge L (2010) Mechanisms of life span extension by rapamycin in the fruit fly Drosophila melanogaster. Cell Metab 11:35–46. CrossRefPubMedPubMedCentralGoogle Scholar
  14. Blagosklonny MV (2013) Big mice die young but large animals live longer. Aging 5:227–233. CrossRefPubMedPubMedCentralGoogle Scholar
  15. Briga M, Verhulst S (2015) What can long-lived mutants tell us about mechanisms causing aging and lifespan variation in natural environments? Exp Gerontol 71:21–26. CrossRefPubMedGoogle Scholar
  16. Broughton S, Partridge L (2009) Insulin/IGF-like signalling, the central nervous system and aging. Biochem J 418:1–12. CrossRefPubMedGoogle Scholar
  17. Calabrese V, Cornelius C, Dinkova-Kostova AT, Iavicoli I, Di Paola R, Koverech A, Cuzzocrea S, Rizzarelli E, Calabrese EJ (2012) Cellular stress responses, hormetic phytochemicals and vitagenes in aging and longevity. Biochim Biophys Acta 1822:753–783. CrossRefPubMedGoogle Scholar
  18. Carretero M, Gomez-Amaro RL, Petrascheck M (2015) Pharmacological classes that extend lifespan of Caenorhabditis elegans. Front Genet 6:77. CrossRefPubMedPubMedCentralGoogle Scholar
  19. Chandrashekara KT, Popli S, Shakarad MN (2014) Curcumin enhances parental reproductive lifespan and progeny viability in Drosophila melanogaster. Age 36:9702. CrossRefPubMedPubMedCentralGoogle Scholar
  20. Chiang W, Tishkoff D, Yang B, Wilson-Grady J, Yu X, Mazer T, Eckersdorff M, Gygi S, Lombard D, Hsu A (2012) C. elegns SIRT6/7 homolog SIR-2.4 promotes DAF-16 relocalization and function during stress. PLoS Genet 8:e1002948. CrossRefPubMedPubMedCentralGoogle Scholar
  21. Christodoulou MS, Thomas A, Poulain S, Vidakovic M, Lahtela-Kakkonen M, Matulis D, Bertrand P, Bartova E, Blanquart C, Mikros E, Fokialakis N, Passarella D, Benhida R, Martinet N (2014) Can we use the epigenetic bioactivity of caloric restriction and phytochemicals to promote healthy ageing? MedChemComm. CrossRefGoogle Scholar
  22. Chung MM, Nicol CJ, Cheng YC, Lin KH, Chen YL, Pei D, Lin CH, Shih YN, Yen CH, Chen SJ, Huang RN, Chiang MC (2017) Metformin activation of AMPK suppresses AGE-induced inflammatory response in hNSCs. Exp Cell Res 352:75–83. CrossRefPubMedGoogle Scholar
  23. Cooney CA (2010) Drugs and supplements that may slow aging of the epigenome. Drug Discov Today 7:57–64. CrossRefGoogle Scholar
  24. Corrêa RCG, Peralta RM, Haminiuk CWI, Maciel GM, Bracht A, Ferreira ICFR (2018) New phytochemicals as potential human anti-aging compounds: reality, promise, and challenges. Crit Rev Food Sci Nutr 58:942–957. CrossRefPubMedGoogle Scholar
  25. Cummings NE, Lamming DW (2017) Regulation of metabolic health and aging by nutrient-sensitive signaling pathways. Mol Cell Endocrinol 455:13–22. CrossRefPubMedGoogle Scholar
  26. Davidson RK, Jupp O, de Ferrars R, Kay CD, Culley KL, Norton R, Driscoll C, Vincent TL, Donell ST, Bao Y, Clark IM (2013) Sulforaphane represses matrix-degrading proteases and protects cartilage from destruction in vitro and in vivo. Arthr Rheum 65:3130–3140. CrossRefGoogle Scholar
  27. Demetrius L (2005) Of mice and men. When it comes to studying ageing and the means to slow it down, mice are not just small humans. EMBO Rep 6:S39–S44CrossRefPubMedPubMedCentralGoogle Scholar
  28. Deshmukh P, Unni S, Krishnappa G, Padmanabhan B (2017) The keap1-Nrf2 pathway: promising therapeutic target to counteract ROS-mediated damage in cancers and neurodegenerative diseases. Biophys Rev 9:41–56. CrossRefPubMedGoogle Scholar
  29. Dinkova-Kostova AT, Fahey JW, Kostov RV, Kensler TW (2017) KEAP1 and done? Targeting the NRF2 pathway with sulforaphane. Trends Food Sci Tech 69:257–269. CrossRefGoogle Scholar
  30. Douki T, Bretonniere Y, Cadet J (2000) Protection against radiation-induced degradation of DNA bases by polyamines. Radiat Res 153:29–35CrossRefPubMedGoogle Scholar
  31. Ehninger D, Neff F, Xie K (2014) Longevity, aging and rapamycin. Cell Mol Life Sci 71:4325–4346. CrossRefPubMedPubMedCentralGoogle Scholar
  32. Eisenberg T, Knauer H, Schauer A, Büttner S, Ruckenstuhl C, Carmona-Gutierrez D, Ring J, Schroeder S, Magnes C, Antonacci L, Fussi H, Deszcz L, Hartl R, Schraml E, Criollo A, Megalou E, Weiskopf D, Laun P, Heeren G, Breitenbach M, Grubeck-Loebenstein B, Herker E, Fahrenkrog B, Fröhlich KU, Sinner F, Tavernarakis N, Minois N, Kroemer G, Madeo F (2009) Induction of autophagy by spermidine promotes longevity. Nat Cell Biol 11:1305–1314. CrossRefPubMedGoogle Scholar
  33. Eisenberg T, Abdellatif M, Schroeder S, Primessnig U, Stekovic S, Pendl T, Harger A, Schipke J, Zimmermann A, Schmidt A, Tong M, Ruckenstuhl C, Dammbrueck C, Gross AS, Herbst V, Magnes C, Trausinger G, Narath S, Meinitzer A, Hu Z, Kirsch A, Eller K, Carmona-Gutierrez D, Büttner S, Pietrocola F, Knittelfelder O, Schrepfer E, Rockenfeller P, Simonini C, Rahn A, Horsch M, Moreth K, Beckers J, Fuchs H, Gailus-Durner V, Neff F, Janik D, Rathkolb B, Rozman J, de Angelis MH, Moustafa T, Haemmerle G, Mayr M, Willeit P, von Frieling-Salewsky M, Pieske B, Scorrano L, Pieber T, Pechlaner R, Willeit J, Sigrist SJ, Linke WA, Mühlfeld C, Sadoshima J, Dengjel J, Kiechl S, Kroemer G, Sedej S, Madeo F (2016) Cardioprotection and lifespan extension by the natural polyamine spermidine. Nat Med 22:1428–1438. CrossRefPubMedPubMedCentralGoogle Scholar
  34. Fadus MC, Lau C, Bikhchandani J, Lynch HT (2017) Curcumin: an age-old anti-inflammatory and anti-neoplastic agent. J Tradit Complement Med 7:339–346. CrossRefPubMedGoogle Scholar
  35. Farr JN, Xu M, Weivoda MM, Monroe DG, Fraser DG, Onken JL, Negley BA, Sfeir JG, Ogrodnik MB, Hachfeld CM, LeBrasseur NK, Drake MT, Pignolo RJ, Pirtskhalava T, Tchkonia T, Oursler MJ, Kirkland JL, Khosla S (2017) Targeting cellular senescence prevents age-related bone loss in mice. Nat Med 23:1072–1079. CrossRefPubMedPubMedCentralGoogle Scholar
  36. Fontana L, Partridge L, Longo VD (2010) Extending healthy life span-from yeast to humans. Science 328:321–326. CrossRefPubMedPubMedCentralGoogle Scholar
  37. Fuentes F, Paredes-Gonzalez X, Kong AN (2015) Dietary glucosinolates sulforaphane, phenethyl isothiocyanate, indole-3-carbinol/3,3′-diindolylmethane: anti-oxidative stress/inflammation, Nrf2, epigenetics/epigenomics and in vivo cancer chemopreventive efficacy. Curr Pharmacol Rep 1:179–196. CrossRefPubMedPubMedCentralGoogle Scholar
  38. Garigan D, Hsu AL, Fraser AG, Kamath RS, Ahringer J, Kenyon C (2002) Genetic analysis of tissue aging in Caenorhabditis elegans: a role for heat-shock factor and bacterial proliferation. Genetics 161:1101–1112PubMedPubMedCentralGoogle Scholar
  39. Gems D, Partridge L (2013) Genetics of longevity in model organisms: debates and paradigm shifts. Annu Rev Physiol 75:621–644. CrossRefPubMedGoogle Scholar
  40. Grabowska W, Suszek M, Wnuk M, Lewinska A, Wasiak E, Sikora E, Bielak-Zmijewska A (2016) Curcumin elevates sirtuin level but does not postpone in vitro senescence of human cells building the vasculature. Oncotarget 7:19201–19213. CrossRefPubMedPubMedCentralGoogle Scholar
  41. Graziotto JJ, Cao K, Collins FS, Krainc D (2012) Rapamycin activates autophagy in Hutchinson-Gilford progeria syndrome: implications for normal aging and age-dependent neurodegenerative disorders. Autophagy 8:147–151. CrossRefPubMedPubMedCentralGoogle Scholar
  42. Greer EL, Oskoui PR, Banko MR, Maniar JM, Gygi MP, Gygi SP, Brunet A (2007) The energy sensor AMP-activated protein kinase directly regulates the mammalian FOXO3 transcription factor. J Biol Chem 282:30107–30119. CrossRefPubMedGoogle Scholar
  43. Grünwald S, Stellzig J, Adam IV, Weber K, Binger S, Boll M, Knorr E, Twyman RM, Vilcinskas A, Wenzel U (2013) Longevity in the red flour beetle Tribolium castaneum is enhanced by broccoli and depends on nrf-2, jnk-1 and foxo-1 homologous genes. Genes Nutr 8:439–448. CrossRefPubMedPubMedCentralGoogle Scholar
  44. Grünz G, Haas K, Soukup S, Klingenspor M, Kulling SE, Daniel H, Spanier B (2012) Structural features and bioavailability of four flavonoids and their implications for lifespan-extending and antioxidant actions in C. elegans. Mech Ageing Dev 133:1–10. CrossRefPubMedGoogle Scholar
  45. Guarente L (2000) Sir2 links chromatin silencing, metabolism, and aging. Genes Dev 14:1021–1026PubMedGoogle Scholar
  46. Hansen M, Taubert S, Crawford D, Libina N, Lee SJ, Kenyon C (2007) Lifespan extension by conditions that inhibit translation in Caenorhabditis elegans. Aging Cell 6:95–110. CrossRefPubMedGoogle Scholar
  47. Hardie DG, Hawley SA (2001) AMP-activated protein kinase: the energy charge hypothesis revisited. Bioassays 23:1112–1119. CrossRefGoogle Scholar
  48. Harrison DE, Strong R, Sharp ZD, Nelson JF, Astle CM, Flurkey K, Nadon NL, Wilkinson JE, Frenkel K, Carter CS, Pahor M, Javors MA, Fernandez E, Miller RA (2009) Rapamycin fed late in life extends lifespan in genetically heterogeneous mice. Nature 460:392–395. CrossRefPubMedPubMedCentralGoogle Scholar
  49. Harvey AL (2008) Natural products in drug discovery. Drug Discov Today 13:894–901. CrossRefPubMedGoogle Scholar
  50. Heiss E, Herhaus C, Klimo K, Bartsch H, Gerhauser C (2001) Nuclear factor-κB is a molecular target for sulforaphane-mediated anti-inflammatory mechanisms. J Biol Chem 276:32008–32015. CrossRefPubMedGoogle Scholar
  51. Honda Y, Tanaka M, Honda S (2010) Trehalose extnds longevity in the nematode Caenorhabditis elegans. Aging Cell 472:226–229. CrossRefGoogle Scholar
  52. Howitz KT, Bitterman KJ, Cohen HY, Lamming DW, Lavu S, Wood JG, Zipkin RE, Chung P, Kisielewski A, Zhang LL, Scherer B, Sinclair DA (2003) Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan. Nature 425:191–196. CrossRefPubMedGoogle Scholar
  53. Imai S, Guarente L (2010) Ten years of NAD-dependent SIR2 family deacetylases: implications for metabolic diseases. Trends Pharmacol Sci 31:212–220. CrossRefPubMedPubMedCentralGoogle Scholar
  54. Ivanov DK, Papatheodorou I, Ziehm M, Thornton JM (2013) Transcriptional feedback in the insulin signalling pathway modulates ageing in both Caenorhabditis elegans and Drosophila melanogaster. Mol BioSyst 9:1756–1764. CrossRefPubMedPubMedCentralGoogle Scholar
  55. Johnson TE, Cypser J, de Castro E, de Castro S, Henderson S, Murakami S, Rikke B, Tedesco P, Link C (2000) Gerontogenes mediate health and longevity in nematodes through increasing resistance to environmental toxins and stressors. Exp Gerontol 35:687–694CrossRefPubMedGoogle Scholar
  56. Johnson SC, Rabinovitch PS, Kaeberlein M (2013) mTOR is a key modulator of ageing and age-related disease. Nature 493:338–345. CrossRefPubMedPubMedCentralGoogle Scholar
  57. Jones DP (2015) Redox theory of aging. Redox Biol 5:71–79. CrossRefPubMedPubMedCentralGoogle Scholar
  58. Kahn NW, Rea SL, Moyle S, Kell A, Johnson TE (2008) Proteasomal dysfunction activates the transcription factor SKN-1 and produces a selective oxidative-stress response in Caenorhabditis elegans. Biochem J 409:205–213. CrossRefPubMedGoogle Scholar
  59. Kampkötter A, Nkwonkam CG, Zurawski RF, Timpel C, Chovolou Y, Wätjen W, Kahl R (2007) Investigations of protective effects of the flavonoids quercetin and rutin on stress resistance in the model organism Caenorhabditis elegans. Toxicology 234:113–123.,tox.2007.02.006 CrossRefPubMedGoogle Scholar
  60. Kampkötter A, Timpel C, Zurawski RF, Ruhl S, Chovolou Y, Proksch P, Wätjen W (2008) Increase of stress resistance and lifespan of Caenorhabditis elegans by quercetin. Comp Biochem Physiol B 149:314–323. CrossRefPubMedGoogle Scholar
  61. Katic M, Kahn CR (2005) The role of insulin and IGF-1 signaling in longevity. Cell Mol Life Sci 62:320–343. CrossRefPubMedGoogle Scholar
  62. Kennedy BK, Lamming DW (2016) The mechanistic target of rapamycin: the grand conductor of metabolism and aging. Cell Metab 23:990–1003. CrossRefPubMedPubMedCentralGoogle Scholar
  63. Kenyon CJ (2010) The genetics of ageing. Nature 464:504–512. CrossRefPubMedGoogle Scholar
  64. Kim SB, Kodell RL, Moon H (2014) A diversity index for model space selection in the estimation of benchmark and infectious doses via model averaging. Risk Anal 34:453–464. CrossRefPubMedGoogle Scholar
  65. Kulkarni SS, Cantó C (2015) The molecular targets of resveratrol. Biochim Biophys Acta 1852:1114–1123. CrossRefPubMedGoogle Scholar
  66. Kwak MK, Wakabayashi N, Greenlaw JL, Yamamoto M, Kensler TW (2003) Antioxidants enhance mammalian proteasome expression through the Keap1-Nrf2 signaling pathway. Mol Cel Biol 23:8786–8794. CrossRefGoogle Scholar
  67. Lapierre LR, Kumsta C, Sandri M, Ballabio A, Hansen M (2015) Transcriptional and epigenetic regulation of autophagy in aging. Autophagy 11:867–880. CrossRefPubMedPubMedCentralGoogle Scholar
  68. Le Bourg E (2009) Hormesis, aging and longevity. Biochim Biophys Acta 1790:1030–1039. CrossRefPubMedGoogle Scholar
  69. Le Bourg E (2012) Combined effects of two mild stresses (cold and hypergravity) on longevity, behavioral aging, and resistance to severe stresses in Drosophila melanogaster. Biogerontology 13:313–328. CrossRefPubMedGoogle Scholar
  70. Le Bourg E (2016) The somatotropic axis may not modulate ageing and longevity in humans. Biogerontology 17:421–429. CrossRefPubMedGoogle Scholar
  71. Le Bourg E (2017) Combining three mild stresses in Drosophila melanogaster flies does not have a more positive effect on resistance to a severe cold stress than combining two mild stresses. Biogerontology 18:275–284. CrossRefPubMedGoogle Scholar
  72. Lee SH, Min KJ (2013) Caloric restriction and its mimetics. BMB Rep 46:181–187. CrossRefPubMedPubMedCentralGoogle Scholar
  73. Lee KS, Lee BS, Semnani S, Avanesian A, Um CY, Jeon HJ, Seong KM, Yu K, Min KJ, Jafari M (2010) Curcumin extends life span, improves health span, and modulates the expression of age-associated aging genes in Drosophila melanogaster. Rejuvenation Res 13:561–570. CrossRefPubMedGoogle Scholar
  74. Li J, Johnson D, Calkins M, Wright L, Svendsen C, Johnson J (2004) Stabilization of Nrf2 by tBHQ confers protection against oxidative stress-induced cell death in human neural stem cells. Toxicol Sci 83:313–328. CrossRefPubMedGoogle Scholar
  75. Liao VH, Yu CW, Chu YJ, Li WH, Hsieh YC, Wang TT (2011) Curcumin-mediated lifespan extension in Caenorhabditis elegans. Mech Ageing Dev 132:480–487. CrossRefPubMedGoogle Scholar
  76. Lin SJ, Defossez PA, Guarente L (2000) Requirement of NAD and SIR2 for lifespan extension by calorie restriction in Saccharomyces cerevisiae. Science 289:2126–2128CrossRefPubMedGoogle Scholar
  77. Lionaki E, Markaki M, Tavernarakis N (2013) Autophagy and ageing: insights from invertebrate model organisms. Ageing Res Rev 12:413–428. CrossRefPubMedGoogle Scholar
  78. Lucanic M, Lithgow GJ, Alavez S (2013) Pharmacological lifespan extension of invertebrates. Ageing Res Rev 12:445–458. CrossRefPubMedGoogle Scholar
  79. Ma S, Gladyshev VN (2017) Molecular signatures of longevity: insights from corss-species comparative studies. Semin Cell Dev Biol 70:190–203. CrossRefPubMedPubMedCentralGoogle Scholar
  80. Madeo F, Eisenberg T, Büttner S, Ruckenstuhl C, Kroemer G (2010) Spermidine: a novel autophagy inducer and longevity elixir. Autophagy 6:160–162CrossRefPubMedGoogle Scholar
  81. Madeo F, Zimmermann A, Maiuri MC, Kroemer G (2017) Essential role for autophagy in life span extension. J Clin Invest 125:85–93. CrossRefGoogle Scholar
  82. Martin GM (2017) Geroscience: addressing the mismatch between its exciting research opportunities, its economic imperative and its current funding crisis. Exp Gerontol 94:46–51. CrossRefPubMedGoogle Scholar
  83. Martins R, Lithgow G, Link W (2016) Long live FOXO: unraveling the role of FOXO proteins in aging and longevity. Aging Cell 15:196–207. CrossRefPubMedGoogle Scholar
  84. Mattson MP (2008) Dietary factors, hormesis and health. Ageing Res Rev 7:43–48CrossRefPubMedGoogle Scholar
  85. Mazucanti CH, Cabral-Costa JV, Vasconcelos AR, Andreotti DZ, Scavone C, Kawamoto EM (2015) Longevity pathways (mTOR, SIRT, Insulin/IGF-1) as key modulatory targets on aging and neurodegeneration. Curr Top Med Chem 15:2116–2138. CrossRefPubMedGoogle Scholar
  86. Melov S (2016) Geroscience approaches to increase healthspan and slow aging. F1000Res 5:785. CrossRefGoogle Scholar
  87. Miller RA, Harrison DE, Astle CM, Baur JA, Boyd AR, de Cabo R, Fernandez E, Flurkey K, Javors MA, Nelson JF, Orihuela CJ, Pletcher S, Sharp ZD, Sinclair D, Starnes JW, Wilkinson JE, Nadon NL, Strong R (2011) Rapamycin, but not resveratrol or simvastatin, extends life span of genetically heterogeneous mice. J Gerontol A 66:191–201. CrossRefGoogle Scholar
  88. Minois N (2014) Molecular basis of the ‘anti-aging’ effect of spermidine and other natural polyamines-a mini-review. Gerontology 60:319–326. CrossRefPubMedGoogle Scholar
  89. Minois N, Carmona-Gutierrez D, Bauer MA, Rockenfeller P, Eisenberg T, Brandhorst S, Sj Sigrist, Kroemer G, Madeo F (2012) Spermidine promotes stress resistance in Drosophila melanogaster through authophagy-dependent and –independent pathways. Cell Death Dis 3:e401. CrossRefPubMedPubMedCentralGoogle Scholar
  90. Minois N, Rockenfeller P, Smith TK, Carmona-Gutierrez D (2014) Spermidine feeding decreases age-related locomotor activity loss and induces changes in lipid composition. PLoS ONE 9:e102435. CrossRefPubMedPubMedCentralGoogle Scholar
  91. Mitchell SJ, Scheibye-Knudsen M, Longo DL, de Cabo R (2015) Animal models of aging research: implications for human aging and age-related diseases. Annu Rev Anim Biosci 3:283–303. CrossRefPubMedGoogle Scholar
  92. Mitnitski AB, Rutenberg AD, Rockwood K (2017) Aging, frailty and complex networks. Biogerontology 18:433–446. CrossRefPubMedGoogle Scholar
  93. Moll L, El-Ami T, Cohen E (2014) Selective manipulation of aging: a novel strategy for the treatment of neurodegenerative disorders. Swiss Med Wkly 144:w13917. CrossRefPubMedGoogle Scholar
  94. Monroy A, Lithgow GJ, Alavez S (2013) Curcumin and neurodegenerative diseases. BioFactors 39:122–132. CrossRefPubMedPubMedCentralGoogle Scholar
  95. Moreno-Arriola E, Cárdenas-Rodriguez N, Coballase-Urrutia E, Pedraza-Chaverri J, Carmona-Aparicio L, Ortega-Cuellar D (2014) Caenorhabditis elegans: a useful model for studying metabolic disorders in which oxidative stress is a contributing factor. Oxid Med Cell Longev 2014:705253. CrossRefPubMedPubMedCentralGoogle Scholar
  96. Morris BJ (2013) Seven sirtuins for seven deadly diseases of aging. Free Radic Biol Med 56:133–171. CrossRefPubMedGoogle Scholar
  97. Morselli E, Galluzzi L, Kepp O, Criollo A, Maiuri MC, Tavernarakis N, Madeo F, Kroemer G (2009) Autophagy mediates pharmacological lifespan extension by spermidine and resveratrol. Aging 1:961–970. CrossRefPubMedPubMedCentralGoogle Scholar
  98. Morselli E, Maiuri MC, Markaki M, Megalou E, Pasparaki A, Palikaras K, Criollo A, Galluzzi L, Malik SA, Vitale I, Michaud M, Madeo F, Tavernarakis N, Kroemer G (2010) Caloric restriction and resveratrol promote longevity through the Sirtuin-1-dependent induction of autophagy. Cell Death Dis 1:e10. CrossRefPubMedPubMedCentralGoogle Scholar
  99. Moskalev A, Chernyagina E, Tsvetkov V, Fedintsev A, Shaposhnikov M, Krut’ko V, Zhavoronkov A, Kennedy BK (2016) Developing criteria for evaluation of geroprotectors as a key stage toward translation to the clinic. Aging Cell 15:407–415. CrossRefPubMedPubMedCentralGoogle Scholar
  100. Mouchiroud L, Molin L, Dalliere N, Solari F (2010) Life span extension by resveratrol, rapamycin, and metformin: the promise of dietary restriction mimetics for an healthy aging. BioFactors 36:377–382. CrossRefPubMedGoogle Scholar
  101. Mu H, Høy CE (2004) The digestion of dietary triacylglycerols. Prog Lipid Res 43:105–133CrossRefPubMedGoogle Scholar
  102. Nair S, Doh ST, Chan JY, Kong AN, Cai L (2008) Regulatory potential for concerted modulation of Nrf2- and Nfkb1-mediated gene expression in inflammation and carcinogenesis. Br J Cancer 99:2070–2082. CrossRefPubMedPubMedCentralGoogle Scholar
  103. Pan H, Finkel T (2017) Key proteins and pathways that regulate lifespan. J Biol Chem 292:6452–6460. CrossRefPubMedPubMedCentralGoogle Scholar
  104. Park SJ, Ahmad F, Philp A, Baar K, Williams T, Luo H, Ke H, Rehmann H, Taussig R, Brown AL, Kim MK, Beaven MA, Burgin AB, Manganiello V, Chung JH (2012) Resveratrol ameliorates aging-related metabolic phenotypes by inhibiting cAMP phosphodiesterases. Cell 148:421–433. CrossRefPubMedPubMedCentralGoogle Scholar
  105. Partridge L (2014) Intervening in ageing to prevent the diseases of ageing. Trend Endocrinol Metab 25:555–557. CrossRefGoogle Scholar
  106. Peng C, Wang X, Chen J, Jiao R, Wang L, Li YM, Zuo Y, Liu Y, Lei L, Ma KY, Huang Y, Chen ZY (2014) Biology of ageing and role of dietary antioxidants. Biomed Res Int 2014:831841. CrossRefPubMedPubMedCentralGoogle Scholar
  107. Pérez VI, Bokov A, Van Remmen H, Mele J, Ran Q, Ikeno Y, Arlan Richardson (2009) Is the oxidative stress theory of aging dead? Biochim Biophys 1790:1005–1014. CrossRefGoogle Scholar
  108. Pickering AM, Linder RA, Zhang H, Forman HJ, Davies KJ (2012) Nrf2-dependent induction of proteasome and Pa28αβ regulator are required for adaptation to oxidative stress. J Biol Chem 287:10021–10031. CrossRefPubMedPubMedCentralGoogle Scholar
  109. Pietsch K, Saul N, Menzel R, Stürzenbaum SR, Steinberg CEW (2009) Quercetin mediated lifespan extension in Caenorhabditis elegans is modulated by age-1, daf-2, sek-1 and unc-43. Biogerontology 10:565–578. CrossRefPubMedGoogle Scholar
  110. Pitoniak A, Bohmann D (2015) Mechanisms and functions of Nrf2 signaling in Drosophila. Free Radic Biol Med 88:302–313. CrossRefPubMedPubMedCentralGoogle Scholar
  111. Plauth A, Geiskowski A, Wowro SJ, Liedgens L, Rousseau M, Weidner C, Fuhr L, Jliem M, Jenkins G, Lotito S, Wainwright LJ, Sauer S (2016) Hormetic shifting of redox enviroment by pro-oxidative resveratrol protects cells against stress. Free Radic Biol Med 99:608–622. CrossRefPubMedGoogle Scholar
  112. Podlutsky A (2019) Running out of developmental program and selfish anti-aging: a new hypothesis explaining the aging process in primates. Geroscience. CrossRefPubMedGoogle Scholar
  113. Proshkina E, Lashmanova E, Dobrovolskaya E, Zemskaya N, Kudryavtseva A, Shaposhnikov M, Moskalev A (2016) Geroprotective and radioprotective activity of quercetin, (-)-epicatechin and ibuprofen in Drosophila melanosgaster. Front Pharmacol 7:505. CrossRefPubMedPubMedCentralGoogle Scholar
  114. Pu Y, Zhang H, Wang P, Zhao Y, Li Q, Wei X, Cui Y, Sun J, Shang Q, Liu D, Zhu Z (2013) Dietary curcumin ameliorates aging-related cerebrovascular dysfunction through the AMPK/uncoupling protein 2 pathway. Cell Physiol Biochem 32:1167–1177. CrossRefPubMedGoogle Scholar
  115. Ramos-Gomez M, Olivares-Marin IK, Canizal-García M, González-Hernández JC, Nava GM, Madrigal-Perez LA (2017) Resveratrol induces mitochondrial dysfunction and decreases chronological life span of Saccharomyces cerevisiae in a glucose-dependent manner. J Bioenerg Biomembr 49:241–251. CrossRefPubMedGoogle Scholar
  116. Rattan SIS (2008) Hormesis in aging. Ageing Res Rev 7:63–78CrossRefPubMedGoogle Scholar
  117. Rattan SI, Kryzch V, Schnebert S, Perrier E, Nizard C (2013) Hormesis-based anti-aging products: a case study of a novel cosmetic. Dose Response 11:99–108. CrossRefPubMedGoogle Scholar
  118. Ristow M, Schmeisser S (2011) Extending life span by increasing oxidative stress. Free Radic Biol Med 51:327–336. CrossRefPubMedGoogle Scholar
  119. Robida-Stubbs S, Glover-Cutter K, Lamming DW, Mizunuma M, Narasimhan SD, Neumann-Haefelin E, Sabatini DM, Blackwell TK (2012) TOR signaling and rapamycin influence longevity by regulating SKN-1/Nrf and DAF-16/FoxO. Cell Metab 15:713–724. CrossRefPubMedPubMedCentralGoogle Scholar
  120. Rogina B, Helfand SL (2004) Sir2 mediates longevity in the fly through a pathway related to calorie resriction. Proc Natl Acad Sci 101:15998–16003. CrossRefPubMedGoogle Scholar
  121. Ryan MJ, Jackson JR, Hao Y, Williamson CL, Dabkowski ER, Hollander JM, Alway SE (2010) Suppression of oxidative stress by resveratrol after isometric contractions in gastrocnemius muscles of aged mice. J Gerontol A 65:815–831. CrossRefGoogle Scholar
  122. Sands WA, Page MM, Selman C (2017) Proteostasis and ageing: insights from long-lived mutant mice. J Physiol 595:6383–6390. CrossRefPubMedPubMedCentralGoogle Scholar
  123. Sarbassov DD, Ali SM, Sengupta S, Sheen JH, Hsu PP, Bagley AF, Markhard AL, Sabatini DM (2006) Prolonged rapamycin treatment inhibits mTORC2 assembly and Akt/PKB. Mol Cell 22:159–168. CrossRefPubMedGoogle Scholar
  124. Saul N, Pietsch K, Menzel R, Sturzenbaum SR, Steinberg CE (2009) Catechin induced longevity in C. elegans: from key regulator genes to disposable soma. Mech Ageing Dev 130:477–486. CrossRefPubMedGoogle Scholar
  125. Sen P, Shah PP, Nativio R, Berger SL (2016) Epigenetic mechanisms of longevity and aging. Cell 166:822–839. CrossRefPubMedPubMedCentralGoogle Scholar
  126. Seong KM, Yu M, Lee KS, Park S, Jin YW, Min KJ (2015) Curcumin mitigates accelerated aging after irradiation in Drosophila by reducing oxidative stress. Biomed Res Int 2015:425380. CrossRefPubMedPubMedCentralGoogle Scholar
  127. Shen Y, Han C, Chen X, Hou X, Long Z (2013) Simultaneous determination of three Curcuminoids in Curcuma wenyujin Y.H.chen et C.Ling. by liquid chromatography-tandem mass spectrometry combined with pressurized liquid extraction. J Pharm Biomed Anal 81–82:146–150. CrossRefPubMedGoogle Scholar
  128. Silva-Palacios A, Ostolga-Chavarria M, Zazueta C, Königsberg M (2018) Nrf2: molecular and epigenetic regulation during aging. Age Res Rev 47:31–40. CrossRefGoogle Scholar
  129. Soda K, Kano Y, Chiba F, Koizumi K, Miyaki Y (2013) Increased polyamine intake inhibits age-associated alteration in global DNA methylation and 1,2-dimethylhydrazine-induced tumorigenesis. PLoS ONE 8:e64357. CrossRefPubMedPubMedCentralGoogle Scholar
  130. Suh Y, Atzmon G, Cho MO, Hwang D, Liu B, Leahy DJ, Barzilai N, Cohen P (2008) Functionally significant insulin-like growth factor I receptor mutations in centenarians. Proc Natl Acad Sci USA 105:3438–3442. CrossRefPubMedGoogle Scholar
  131. Sun C, Li S, Li D (2016) Sulforaphane mitigates muscle fibrosis in mdx mice via Nrf2-mediated inhibition of TGF-β/Smad signaling. J Appl Physiol 120:377–390. CrossRefPubMedGoogle Scholar
  132. Swindell WR (2017) Meta-analysis of 29 experiments evaluating the effects of rapamycin on life span in the laboratory mouse. J Gerontol A 72:1024–1032. CrossRefGoogle Scholar
  133. Takano K, Tatebe J, Washizawa N, Morita T (2018) Curcumin inhibits age-related vascular changes in aged mice fed a high-fat diet. Nutrients 10:E1476. CrossRefPubMedGoogle Scholar
  134. Takaoka M (1939) Resveratrol, a new phenolic compound, from Veratrum grandiflorum. J Chem Soc Jpn 60:1090–1100Google Scholar
  135. Tsuchiya M, Dang N, Kerr E, Hu D, Steffen K, Oakes J, Kennedy B, Kaeberlein M (2006) Sirtuin-independent effects of nicotinamide on lifespan extension from calorie restriction in yeast. Aging Cell 5:505–514. CrossRefPubMedGoogle Scholar
  136. Tung BT, Rodrıguez-Bies E, Talero E, Gamero-Estevez E, Motilva V, Navas P, López-Lluch G (2015) Anti-inflammatory effect of resveratrol in old mice liver. Exp Gerontol 64:1–7. CrossRefPubMedGoogle Scholar
  137. Vaiserman AM (ed) (2017) Anti-aging drugs. Royal Society of Chemistry, LondonGoogle Scholar
  138. Vaiserman A, Lushchak O (2017) Implementation of longevity-promoting supplements and medications in public health practice: achievements, challenges and future perspectives. J Transl Med 15:160. CrossRefPubMedPubMedCentralGoogle Scholar
  139. Vaiserman A, Marotta F (2016) Longevity-promoting pharmaceuticals: is it a time for implementation? Trends Pharmacol Sci 37:331–333. CrossRefPubMedGoogle Scholar
  140. Vezina C, Kudelski A, Sehgal SN (1975) Rapamycin (AY-22,989), a new antifungal antibiotic. I. Taxonomy of the producing streptomycete and isolation of the active principle. J Antibiot 28:721–726CrossRefPubMedGoogle Scholar
  141. Villatoro-Pulido M, Font R, Saha S, Obregón-Cano S, Anter J, Muñoz-Serrano A, De Haro-Bailón A, Alonso-Moraga A, Del Río-Celestino M (2012) In vivo biological activity of rocket extracts (Eruca vesicaria subsp. sativa (Miller) Thell) and sulforaphane. Food Chem Toxicol 50:1384–1392. CrossRefPubMedGoogle Scholar
  142. Wang C, Wheeler CT, Alberico T, Sun X, Seeberger J, Laslo M, Spangler E, Kern B, de Cabo R, Zou S (2013) The effect of resveratrol on lifespan depends on both gender and dietary nutrient composition in Drosophila melanogaster. Age 35:69–81. CrossRefPubMedGoogle Scholar
  143. Wardyn JD, Ponsford AH, Sanderson CM (2015) Dissecting molecular cross-talk between Nrf2 and NF-κB response pathways. Biochem Soc Trans 43:621–626. CrossRefPubMedPubMedCentralGoogle Scholar
  144. Wood JG, Rogina B, Lavu S, Howitz K, Helfand SL, Tatar M, Sinclair D (2004) Sirtuin activators mimic caloric restriction and delay ageing in metazoans. Nature 430:686–689. CrossRefPubMedGoogle Scholar
  145. Xu Z, Wang S, Ji H, Zhang Z, Chen J, Tan Y, Wintergerst K, Zheng Y, Sun J, Cai L (2016) Broccoli sprout extract prevents diabetic cardiomyopathy via Nrf2 activation in db/db T2DM mice. Sci Rep 6:30252. CrossRefPubMedPubMedCentralGoogle Scholar
  146. Xu M, Bradley EW, Weivoda MM, Hwang SM, Pirtskhalava T, Decklever T, Curran GL, Ogrodnik M, Jurk D, Johnson KO, Lowe V, Tchkonia T, Westendorf JJ, Kirkland JL (2017) Transplanted senescent cells induce an osteoarthritis-like condition in mice. J Gerontol A 72:780–785. CrossRefGoogle Scholar
  147. Xu M, Pirtskhalava T, Farr JN, Weigand BM, Palmer AK, Weivoda MM, Inman CL, Ogrodnik MB, Hachfeld CM, Fraser DG, Onken JL, Johnson KO, Verzosa GC, Langhi LGP, Weigl M, Giorgadze N, LeBrasseur NK, Miller JD, Jurk D, Singh RJ, Allison DB, Ejima K, Hubbard GB, Ikeno Y, Cubro H, Garovic VD, Hou X, Weroha SJ, Robbins PD, Niedernhofer LJ, Khosla S, Tchkonia T, Kirkland JL (2018) Senolytics improve physical function and increase lifespan in old age. Nat Med 24:1246–1256. CrossRefPubMedPubMedCentralGoogle Scholar
  148. Yabluchanskiy A, Ungvari Z, Csiszar A, Tarantini S (2018) Advances and challenges in geroscience research: an update. Physiol Int 105:298–308. CrossRefPubMedGoogle Scholar
  149. Ye K, Ji CB, Lu XW, Ni YH, Gao CL, Chen XH, Zhao YP, Gu GX, Guo XR (2010) Resveratrol attenuates radiation damage in Caenorhabditis elegans by preventing oxidative stress. J Radiat Res 51:473–479CrossRefPubMedGoogle Scholar
  150. Yoo YJ, Kim H, Park SR, Yoon YJ (2017) An overview of rapamycin: from discovery to future perspectives. J Ind Microbiol Biotechnol 44:537–553. CrossRefPubMedGoogle Scholar
  151. Zhang R, Zhang J, Fang L, Li X, Zhao Y, Shi W, An L (2015) Neuroprotective effects of sulforaphane on cholinergic neurons in mice with Alzheimer’s disease-like lesions. Int J Mol Sci 15:14396–14410. CrossRefGoogle Scholar
  152. Zhu S, Dong Z, Ke X, Hou J, Zhao E, Zhang K, Wang F, Yang L, Xiang Z, Cui H (2018) The role of sirtuins family in cell metabolism during tumor development. Semin in Cancer Biol. CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Darío R. Gómez-Linton
    • 1
  • Silvestre Alavez
    • 2
  • Adriana Alarcón-Aguilar
    • 3
  • Norma E. López-Diazguerrero
    • 3
  • Mina Konigsberg
    • 3
  • Laura J. Pérez-Flores
    • 3
    Email author
  1. 1.Ph.D. Biotechnology ProgramUniversidad Autónoma MetropolitanaMexico CityMexico
  2. 2.Department of Health ScienceUniversidad Autónoma MetropolitanaMexico StateMexico
  3. 3.Department of Health ScienceUniversidad Autónoma MetropolitanaMexico CityMexico

Personalised recommendations