Advertisement

Earthquake risk scenarios of the Ciutat Vella District in Valencia, Spain

  • Arianna Guardiola-VílloraEmail author
  • Luisa Basset-Salom
Original Research
  • 6 Downloads

Abstract

According to the United Nations Office for Disaster Risk Reduction cities must take measures to anticipate disasters and mitigate their impact, protecting homes and cultural heritage, minimizing losses due to earthquakes and other threats. After the recent earthquakes in historical city centres, the evaluation of the seismic risk, even in regions of low or moderate seismicity, is imperative, being damage assessment and loss estimation essential for its reduction. In this paper the seismic risk analysis of the residential buildings in the Ciutat Vella District in Valencia, with great historical and architectural value, is presented. The vulnerability of Ciutat Vella has been assessed with the Vulnerability Index Method establishing the seismic quality of the residential buildings according to their structural typology, conservation status, age and geometry; identifying the most vulnerable buildings. Damage probability matrices have been obtained for the deterministic and probabilistic earthquake scenarios, estimating for each of them, the seismic risk in terms of direct social and economic losses, mapping the results using a GIS system tool. Results confirm that the vulnerability of the building stock in Ciutat Vella is high being the seismic risk significant. In the event of an earthquake, many residential buildings included in the Catalogue of Listed Buildings of the Special Protection Plan of Ciutat Vella will be damaged. The detailed analysis of the most vulnerable buildings will provide, in future research works, criteria for intervention to enhance their structural seismic response, safeguarding the architectural heritage and contributing to the reduction of human and material losses.

Keywords

Vulnerability Index Method Damage assessment Seismic risk scenarios Loss estimation Urban areas Ciutat Vella 

Notes

Acknowledgements

The Authors wish to acknowledge the students Ana Pérez Recatalá, Beatriz Alborch Vidal and Blanca Salavert Pamblanco for their help in the building information retrieval under a collaboration grant program funded by the Ministry of Education, Culture and Sports. Finally, the authors want to thank P. McGowan for the review of the English version of the paper.

References

  1. Athmani AE, Gouasmia A, Ferreira TM, Vicente R, Khemis A (2015) Seismic vulnerability assessment of historical masonry buildings located in Annaba city (Algeria) using non ad-hoc data survey. Bull Earthq Eng 13:2283–2307.  https://doi.org/10.1007/s10518-014-9717-7 CrossRefGoogle Scholar
  2. Ayuntamiento de Valencia (2017) Censo de población y viviendas. Oficina de Estadística http://www.valencia.es/ayuntamiento/estadistica.nsf/. Accessed 12 Sept 2018
  3. Ayuntamiento de Valencia (2018) Plan Especial de protección de Ciutat Vella (PEP Ciutat Vella). http://www.valencia.es/ayuntamiento/urbanismo2.nsf/. Accessed 5 Dec 2018
  4. Barbat AH, Yépez Moya F, Canas JA (1996) Damage scenarios simulation for seismic risk assessment in urban zones. Earthq Spectra 12(3):371–394CrossRefGoogle Scholar
  5. Barbat AH, Pujades LG, Lantada N (2008) Seismic damage evaluation in urban areas using a capacity-spectrum based method: application to Barcelona. Soil Dyn Earthq Eng 28(10–11):851–865CrossRefGoogle Scholar
  6. Barbat AH, Carreño ML, Pujades LG, Lantada N, Cardona OD, Marulanda MC (2010) Seismic vulnerability and risk evaluation methods for urban areas. A review with application to a pilot area. Struct Infrastruct Eng 6:17–38CrossRefGoogle Scholar
  7. Basset-Salom L, Guardiola-Víllora A (2013) Influence of the maintenance in seismic response of Lorca historic centre masonry residential buildings after 11 May earthquake. Studies, repairs and maintenance of heritage architecture XIII. WIT Trans Built Environ 131:343–354CrossRefGoogle Scholar
  8. Basset-Salom L, Guardiola-Víllora A (2014) Seismic performance of masonry residential buildings in Lorca’s city centre, after the 11th May 2011 earthquake. Bull Earthq Eng 12:2027–2048.  https://doi.org/10.1007/s10518-013-9559-8 CrossRefGoogle Scholar
  9. Benedetti D, Petrini V (1984) Sulla Vulnerabilità di Edifici in Muratura: Proposta di un Metodo di Valutazione. L’industria delle Costruzioni 149(1):66–74Google Scholar
  10. Benedetti D, Benzoni G, Parisi MA (1988) Seismic vulnerability and risk evaluation for old urban nuclei. Earthq Eng Struct Dyn 16:183–201.  https://doi.org/10.1002/eqe.4290160203 CrossRefGoogle Scholar
  11. Bernardini A, Gori R, Modena C (1990) An application of coupled analytical models and experiential knowledge for seismic vulnerability analyses of masonry buildings. In: Koridze A (ed) engineering aspects of earthquake phenomena, vol 3. Omega Scientific, Oxon, pp 161–180Google Scholar
  12. Blanca Giménez V, Castilla CabanesN, Cortés López JM, Martínez Antón A, Pastor Villa R (2010) Introducción al estudio de gestión de residuos de la construcción y demolición y estimación de cantidades generadas en obra. Universitat Politécnica de Valencia. http://hdl.handle.net/10251/7558
  13. Calvi GM, Pinho R, Magenes G, Bommer JJ, Restrepo-Vélez LF, Crowley H (2006) Development of seismic vulnerability assessment methodologies over the past 30 years. ISET J Earthq Technol 43(3):75–104Google Scholar
  14. Catastro. Base de datos del catastro. https://www1.sedecatastro.gob.es. Accessed 15 Sept 2017–27 Dec 2018
  15. Chever L (2012) Use of seismic assessment methods for planning vulnerability reduction of existing building stock. In: 15th world conference on earthquake engineering, Lisbon, Portugal, September 24–28, 2012. http://www.mediterranee.cerema.fr/IMG/pdf/2012_seismic_vulnerability_assessment.pdf
  16. Coburn A, Spence R (2002) Earthquake protection, 2nd edn. Wiley, Chichester. ISBN 0-470-84923-1CrossRefGoogle Scholar
  17. D’Ayala D (2013) Assessing the seismic vulnerability of masonry buildings. In: Tesfamariam S, Goda K (eds) Handbook of seismic risk analysis and management of civil infrastructure systems. Woodhead Publishing, Sawston, pp 334–365.  https://doi.org/10.1533/9780857098986.3.334 CrossRefGoogle Scholar
  18. D’Ayala D, Speranza E (2002) An integrated procedure for the assessment of seismic vulnerability of historic buildings. In: Proceedings of the 12th European conference on earthquake engineering, London, U.K., paper no. 561Google Scholar
  19. D’Ayala D, Speranza E (2003) Definition of collapse mechanisms and seismic vulnerability of historic masonry buildings. Earthq Spectra 19(3):479–509CrossRefGoogle Scholar
  20. DOGV (2011) Plan Especial frente al Riesgo Sísmico en la Comunitat Valenciana. Decreto 44/2011 de 29 de abril. Diario Oficial de la Generalitat Valenciana nº 6512, 03/05/2011: 16979–17330Google Scholar
  21. Dolce M, Masi A, Marino M, Vona M (2003) Earthquake damage scenarios of the building stock of Potenza (Southern Italy) including site effects. Bull Earthq Eng 1(1):115–140CrossRefGoogle Scholar
  22. FEMA–NIBS, Federal Emergency Management Agency, National Institute of Building Sciences (2000) HAZUS-1999 earthquake loss estimation methodology technical manual, Washington, D.C., USAGoogle Scholar
  23. FEMA–NIBS, Federal Emergency Management Agency, National Institute of Building Sciences (2003) HAZUS-MH MR3 technical manual multi-hazard loss estimation methodology. Earthquake model. Washington, D.C., USAGoogle Scholar
  24. Feriche M (2012) Elaboración de escenarios de daños sísmicos en la ciudad de Granada. Ph.D. tesis. Instituto andaluz de Geofísica y prevención de Desastres sísmicos. Universidad de Granada. http://digibug.ugr.es/handle/10481/29803#.WZy_LbZLe70
  25. Feriche M, Vidal F, García R, Navarro M, Vidal MD, Montilla P, Piñero L (2009). Earthquake damage scenarios in Vélez-Málaga urban area (Southern Spain) applicable to local emergency planning. In: 8th international workshop on seismic microzoning and risk reduction, Almería, Spain, 15–18 March 2009Google Scholar
  26. Feriche M, Vidal F, Alguacil G, Navarro M, Aranda C (2012) Vulnerabilidad y daño en el terremoto de Lorca de 2011, 7ª Asamblea Hispanoportuguesa de Geodesia y Geofísica, San Sebastián, España, 25-28 junio 2012Google Scholar
  27. Ferreira TM, Maio R, Vicente R (2017) Seismic vulnerability assessment of the old city centre of Horta, Azores: calibration and application of a seismic vulnerability index method. Bull Earthq Eng 2017(15):2879–2899.  https://doi.org/10.1007/s10518-016-0071-9 CrossRefGoogle Scholar
  28. Franklin R, Caselles JO, Canas JA, Clapes J, Pujades LG, Navarro MK (2006) Estimación de la respuesta del sitio mediante el método del cociente espectral aplicado a ruido ambiental. Aplicación a la Ciutat Vella de Valencia, Revista Internacional de Métodos Numéricos para Cálculo y Diseño en Ingeniería 22(2):169–191, http://hdl.handle.net/2099/4746. Accessed 5 Dec 2012
  29. Giner JJ, Molina S, Jáuregui PJ (2003) Sismicidad en la Comunidad Valenciana, Física de la Tierra 15:163-187. http://revistas.ucm.es/index.php/FITE/article/view/12668. Accessed 27 Apr 2018
  30. Giovinazzi S (2005) The vulnerability assessment and the damage scenario in seismic risk analysis. Ph.D. Thesis, Technical University Carolo-Wilhelmina, Braunschweig, Germany and University of Florence, ItalyGoogle Scholar
  31. Giovinazzi S, Lagomarsino S (2002) WP04: guidelines for the implementation of the 1 level methodology for the vulnerability assessment of current buildings: RISK-UE project. University of Genoa (Italy)Google Scholar
  32. Giovinazzi S, Lagomarsino S (2004) A macroseismic method for the vulnerability assessment of buildings. In: Proceedings of the 13th world conference on earthquake engineering, Vancouver, Canada, 1–6 August, 2004, paper no. 896Google Scholar
  33. Grünthal G (1998) European macroseismic scale 1998. In: Cahiers du Centre Européen de Géodynamique et de Séismologie, 15, LuxembourgGoogle Scholar
  34. Guardiola-Víllora A, Basset-Salom L (2015) Escenarios de riesgo sísmico del distrito del Eixample de la ciudad de Valencia. Revista Internacional de Métodos Numéricos para el Cálculo y Diseño en Ingeniería 31(2):81–90.  https://doi.org/10.1016/j.rimni.2014.01.002 CrossRefGoogle Scholar
  35. Guardiola-Víllora A, Basset-Salom L, Pérez-García A (2018) Creating a residential building database: sources, contents and reliability. In: Reactive proactive architecture. Ed. Universitat Politècnica de València, chapter 7–14:458-463. ISBN 978-84-9048-713-6Google Scholar
  36. Guéguen Ph, Michel C, LeCorre L (2007) A simplified approach for vulnerability assessment in moderate-to-low seismic hazard regions: application to Grenoble (France). Bull Earthq Eng 5:467–490.  https://doi.org/10.1007/s10518-007-9036-3 CrossRefGoogle Scholar
  37. gvSIG association (2009) gvSIG desktop, the open source geographic information system. http://www.gvsig.com/en/home. Accessed 26 Mar 2017
  38. Irizarry J, Lantada N, Pujades LG, Barbat AH, Goula X, Susagna T, Roca A (2011) Ground-shaking scenarios and urban risk evaluation of Barcelona using the Risk-UE capacity spectrum based method. Bull Earthq Eng 9(2):441–466.  https://doi.org/10.1007/s10518-010-9222-6 CrossRefGoogle Scholar
  39. Irizarry J, Macau A, Figueras S, Goula X, Lantada N, Vendrell S, Pujades LG, Blázquez A (2012) Seismic risk assessment for the city of Girona, Spain. In: 15th world conference on earthquake engineering, Lisbon, Portugal, September 24–28, 2012Google Scholar
  40. IVE, Instituto Valenciano de la Edificación (2018) Coste unitario de ejecución de edificación residencial. http://www.five.es/productos/herramientas-on-line/modulo-de-edificacion/. Accessed Oct 2018
  41. Kappos AJ, Stylianidis KC, Pitilakis K (1998) Development of seismic risk scenarios based on an hybrid method of vulnerability assessment. Nat Hazards 17(2):177–192CrossRefGoogle Scholar
  42. Kappos AJ, Panagopoulos G, Panagiotopoulos C, Penelis G (2006) A hybrid method for the vulnerability assessment of R/C and URM buildings. Bull Earthq Eng 4:391–413.  https://doi.org/10.1007/s10518-006-9023-0 CrossRefGoogle Scholar
  43. Lagomarsino S, Giovinazzi S (2006) Macroseismic and mechanical models for the vulnerability and damage assessment of current buildings. Bull Earthq Eng 4(4):415–443.  https://doi.org/10.1007/s10518-006-9024-z CrossRefGoogle Scholar
  44. Lamego P, Lourenço PB, Sousa ML, Rui Marques R (2017) Seismic vulnerability and risk analysis of the old building stock at urban scale: application to a neighbourhood in Lisbon. Bull Earthq Eng 15:2901–2937.  https://doi.org/10.1007/s10518-016-0072-8 CrossRefGoogle Scholar
  45. Lantada N (2007) Evaluación del riesgo sísmico mediante métodos avanzados y técnicas GIS. Aplicación a la ciudad de Barcelona. PhD Thesis. U.P. Cataluña, Barcelona. http://hdl.handle.net/10803/6259. Accessed Jan 2013
  46. Lantada N, Irizarry J, Barbat A, Goula X, Roca A, Susagna T, Pujades LG (2010) Seismic hazard and risk scenarios for Barcelona, Spain, using the Risk-UE vulnerability index method. Bull Earthq Eng 8(2):201–229.  https://doi.org/10.1007/s10518-009-9148-z CrossRefGoogle Scholar
  47. Lantada N, Pujades LG, Barbat AH (2018) Earthquake risk scenarios in urban areas: a review with applications to the Ciutat Vella District in Barcelona, Spain. Int J Arch Herit 12(7–8):1112–1130.  https://doi.org/10.1080/15583058.2018.1503367 CrossRefGoogle Scholar
  48. Llopis A, Perdigón L, Taberner F (2004) Cartografía Histórica de la ciudad de Valencia, volumen 1, (1608–1929). Facsimil editions DigitalsGoogle Scholar
  49. Maio R, Ferreira TM, Vicente R, Estêvão J (2016) Seismic vulnerability assessment of historical urban centres: case study of the old city centre of Faro, Portugal. J Risk Res 19(5):551–580.  https://doi.org/10.1080/13669877.2014.988285 CrossRefGoogle Scholar
  50. Martínez-Cuevas S, Gaspar-Escribano JM (2016) Reassessment of intensity estimates from vulnerability and damage distributions: the 2011 Lorca earthquake. Bull Earthq Eng 14:2679–2703CrossRefGoogle Scholar
  51. Martínez-Cuevas S, Benito MB, Cervera J, Morillo MC, Luna M (2017) Urban modifiers of seismic vulnerability aimed at Urban Zoning Regulations. Bull Earthq Eng 15:4719–4750.  https://doi.org/10.1007/s10518-017-0162-2 CrossRefGoogle Scholar
  52. Mileto C, Vegas F (2005) Centro histórico de Valencia. Ocho siglos de arquitectura residencial. ISBN: 978-84-943475-5-9. Ed. General de ediciones de Arquitectura, S.L.Google Scholar
  53. Milutinovic ZV, Trendafiloski GS (2003) WP04. Vulnerability of current buildings. RISK-UE project: an advanced approach to earthquake risk scenarios with applications to different European towns. Institute of Earthquake Engineering and Engineering Seismology (IZIIS), SkopjeGoogle Scholar
  54. Mouroux P, Bertrand E, Bour M, Le Brun B, Depinois S, Masure P (2004) The European RISK-UE project: an advanced approach to earthquake risk scenarios. In: Proceeding of the 13th world conference on earthquake engineering (13 WCEE), Vancouver, BC, Canada, 1–6 August, paper 3329Google Scholar
  55. Müge ün E (2011) An integrated seismic loss estimation methodology: a case study in north-western Turkey. PhD Thesis. School of Natural and Applied Sciences, Middle East Technical University, TurkeyGoogle Scholar
  56. MV-101 (1962) Norma M.V.101-1962 Acciones en la edificación. Ministerio de la Vivienda. Decreto 195/1963 de 17 de enero. BOE 35, 9/02/1963:2207–2225Google Scholar
  57. MV-103 (1972) Norma Básica M.V.103-1972. Cálculo de las estructuras de acero laminado en edificación. Ministerio de la Vivienda. Decreto 1353/1973, de 12 de abril. BOE 154, 28/06/1973:13126–13169Google Scholar
  58. MV-201 (1972) Norma M.V.201-1972 Muros resistentes de fábrica de ladrillo. Ministerio de la Vivienda. Decreto 1324/1972, de 20 de abril. BOE 130, 31/05/1972:9594–9624Google Scholar
  59. NCSE-02 (2002) Norma de Construcción Sismorresistente. Parte General y de Edificación. Comisión Permanente de Normas Sismorresistentes, Ministerio de Fomento. Real Decreto 997/2002 de 27 de septiembre. BOE 244, 11/10/2002:35898–35967Google Scholar
  60. NCSE-94 (1994) Norma de Construcción Sismorresistente, Parte General y de Edificación. Comisión Permanente de Normas Sismorresistentes, Ministerio de Fomento. Real Decreto 2543/1994 de 29 de diciembre. BOE 33, 08/02/1995:3935–3980Google Scholar
  61. Novelli VI (2017) Hybrid method for the seismic vulnerability assessment of historic masonry city centres. Ph.D. Thesis. University College London. http://discovery.ucl.ac.uk/1553222/1/Novelli_ID_PHD_thesis.pdf. Accessed 27 Apr 2018
  62. Ortiz Herrada M (2002) El-centro-historico-de-valencia-un-modelo-de-intervencion-patrimonial. Actas del I Congreso del GEIIC. Conservación del Patrimonio: evolución y nuevas perspectivas. https://www.ge-iic.com/2006/06/30/actas-del-i-congreso-del-geiic-conservacion-del-patrimonio-evolucion-y-nuevas-perspectivas/. Accessed 27 Apr 2018
  63. PDS-1 (1974) Norma Sismorresistente PDS-1 (1974), parte A. Comisión Interministerial. Ministerio de Planificación del Desarrollo. Decreto 3209/1974 de 30 de agosto, BOE 279, 21/11/1974:23585–23601Google Scholar
  64. PGS-1 (1968) Norma Sismorresistente PGS-1 (1968), parte A. Comisión Interministerial de la Presidencia del Gobierno. Decreto 106/1969 de 16 de enero. BOE 30, 04/02/1969:1658–1675Google Scholar
  65. Reglamento sobre las restricciones del hierro en la edificación (1941) Gobierno de la Nación. Presidencia de Gobierno. Decreto de 22 de Julio de 1941.BOE 214, 02/08/1941:5848–5853Google Scholar
  66. Roca A, Irizarry J, Lantada N, Barbat A, Goula X, Pujades LI, Susagna T (2006) Método Avanzado para la Evaluación de la Vulnerabilidad y el Riesgo Sísmico. Aplicación a la Ciudad de Barcelona. Física de la Tierra 18:183–203Google Scholar
  67. Ródenas JL, Tomás A, García-Ayllón S (2018) Advances in seismic vulnerability assessment of reinforced concrete buildings applied to the experience of Lorca (Spain) 2011 earthquake. Int J Comput Methods Exp Meas 6(5):887–898.  https://doi.org/10.2495/cmem-v6-n5-887-898 CrossRefGoogle Scholar
  68. Ros A, Casar JI, Romero B, Gomez A, Soler P, Alcalde C, Pecourt J, Matamoros C, Esparza R (1999) 5 años de intervenciones en Ciutat Vella: 1992–1997. ISBN: 9788486828240. Ed. CTAV, Valencia. http://www.arquitectosdevalencia.es/publicaciones/ctav/5-anos-de-intervenciones-en-ciutat-vella-valencia-1992-1997
  69. SEC (2018) Sede Electrónica del Catastro. Ministerio de Hacienda. Gobierno de España. https://www.sedecatastro.gob.es. Accessed 12 Sept 2018
  70. Sousa ML, Campos Costa A (2016) Evolution of earthquake losses in Portuguese residential building stock. Bull Earthq Eng 14:2009–2029.  https://doi.org/10.1007/s10518-015-9809-z CrossRefGoogle Scholar
  71. Spence RJS, So EKM (2011) Human casualties in earthquakes: modelling and mitigation. In: Proceedings of the 9th Pacific Conference on Earthquake Engineering Building an Earthquake-Resilient Society 14-16 April, Auckland, New ZealandGoogle Scholar
  72. Tomás A, Ródenas JL, García-Ayllón S (2017) Proposal for new values of behaviour modifiers for seismic vulnerability evaluation of reinforced concrete buildings applied to Lorca (Spain) using damage data from the 2011 earthquake. Bull Earthq Eng 15:3943–3962.  https://doi.org/10.1007/s10518-017-0100-3 CrossRefGoogle Scholar
  73. Tyagunov S, Stempniewski L, Grünthal G, Wahlström R, Zschau J (2004) Vulnerability and risk assessment for earthquake prone cities. In: 13th world conference on earthquake engineering, Vancouver, B.C., Canada, August 1–6, 2004, paper no. 868Google Scholar
  74. URSUA. Unidad de Registro Sísmico Universidad de Alicante (2010) Mapas de Intensidad sísmica esperada en la Comunidad Valenciana incluyendo efecto del sitio para 500 años y 1000 años. http://web.ua.es/ursua. Accessed 5 Oct 2017
  75. Vacareanu R, Lungu D, Aldea A, Arion C (2004) WP07. Report seismic risk scenarios handbook, Risk-UE Project, BucarestGoogle Scholar
  76. Vicente R, Parodi S, Lagomarsino S, Varum H, Mendes Silva JAR (2011) Seismic vulnerability and risk assessment: case study of the historic city centre of Coimbra, Portugal. Bull Earthq Eng 9(4):1067–1096.  https://doi.org/10.1007/s10518-010-9233-3 CrossRefGoogle Scholar
  77. Whitman RV, Reed JW, Hong ST (1973) Earthquake damage probability matrices. In: Proceedings of the 5th world conference on earthquake engineering, Rome, Italy, vol 2, pp 2531–2540Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Departamento de Mecánica de Medios Continuos y Teoría de EstructurasUniversitat Politècnica de ValènciaValenciaSpain

Personalised recommendations