Advertisement

Seismic assessment of irregular masonry macro-elements through a nonlinear framed model: a case study

  • Wilson TorresEmail author
  • José Luis Almazán
  • Cristián Sandoval
  • Rubén Boroschek
Original Research
  • 36 Downloads

Abstract

The seismic assessment of heritage structures with complex architecture, such as masonry churches, remains a challenging task. In most cases, an accurate and reliable assessment of this type of constructions requires computationally expensive nonlinear analyses. Due to this, simplified models, with an optimal compromise between accuracy and computational burden, continue to be necessary. This paper focuses on assessing the performance of an equivalent framed model, built from beam–column elements with concentrated plasticity at the ends, to simulate the in-plane seismic response of irregular masonry macro-elements. The case under study is the nave macro-element of the Metropolitan Cathedral of Santiago, Chile. The performance of the proposed model is evaluated by comparing its results with the results of a previously generated model based on the rigid body spring model, considering both static and dynamic analysis. The proposed model, which is generated in the open source software OpenSees, shows that can satisfactorily reproduce the macro-element’s state of deterioration for different seismic intensities.

Keywords

Heritage constructions Seismic performance Bar-type elements Macro-element modelling Non-linear analysis Masonry building 

Notes

Acknowledgements

The first author acknowledges the support of the Secretary of Higher Education, Science, Technology and Innovation of Ecuador (SENESCYT), through Contract No. 20120011.

References

  1. Addessi D, Mastrandrea A, Sacco E (2014) An equilibrated macro-element for nonlinear analysis of masonry structures. Eng Struct 70:82–93.  https://doi.org/10.1016/j.engstruct.2014.03.034 CrossRefGoogle Scholar
  2. Anthoine A (1997) Homogenization of periodic masonry: plane stress, generalized plane strain or 3D modelling? Commun Numer Methods Eng 13:319–326CrossRefGoogle Scholar
  3. Belmouden Y, Lestuzzi P (2009) An equivalent frame model for seismic analysis of masonry and reinforced concrete buildings. Constr Build Mater 23(1):40–53.  https://doi.org/10.1016/j.conbuildmat.2007.10.023 CrossRefGoogle Scholar
  4. Biggs J (1964) Introduction to structural dynamics, 1st edn. Mc Graw Hill, New YorkGoogle Scholar
  5. Casarin F (2006) Structural assessment and seismic vulnerability analysis of a complex historical building. Ph.D Thesis, University of TrentoGoogle Scholar
  6. Casolo S (2004) Modelling in-plane micro-structure of masonry walls by rigid elements. Int J Solids Struct 41(13):3625–3641.  https://doi.org/10.1016/j.ijsolstr.2004.02.002 CrossRefGoogle Scholar
  7. Casolo S (2009) Macroscale modelling of microstructure damage evolution by a rigid body and spring model. J Mech Mater Struct 4(3):551–570CrossRefGoogle Scholar
  8. Casolo S, Pena F (2004) A specific rigid element approach for in-plane. In: III Congreso Internacional Sobre Métodos Numéricos En Ingeniería Y Ciencias AplicadasGoogle Scholar
  9. Casolo S, Peña F (2007) Rigid element model for in-plane dynamics of masonry walls considering hysteretic behaviour and damage. Earthq Eng Struct Dyn 36:1029–1048.  https://doi.org/10.1002/eqe CrossRefGoogle Scholar
  10. Casolo S, Sanjust CA (2009) Seismic analysis and strengthening design of a masonry monument by a rigid body spring model: the “Maniace Castle” of Syracuse. Eng Struct 31(7):1447–1459.  https://doi.org/10.1016/j.engstruct.2009.02.030 CrossRefGoogle Scholar
  11. Cattari S, Lagomarsino S (2014) Performance-based approach for the seismic assessment of masonry historical buildings. In: Second European conference on earthquake engineering and seismologyGoogle Scholar
  12. Chen SY, Moon FL, Yi T (2008) A macroelement for the nonlinear analysis of in-plane unreinforced masonry piers. Eng Struct 30(8):2242–2252.  https://doi.org/10.1016/j.engstruct.2007.12.001 CrossRefGoogle Scholar
  13. Chopra A (2012) Dynamics of structures theory and applications to earthquake engineering, 4th edn. Pearson Education, BostonGoogle Scholar
  14. Clementi F, Gazzani V, Poiani M, Lenci S (2016) Assessment of seismic behaviour of heritage masonry buildings using numerical modelling. J Build Eng 8(September):29–47.  https://doi.org/10.1016/j.jobe.2016.09.005 CrossRefGoogle Scholar
  15. Clough R, Penzien J (2003) Dynamics of structures, 3rd edn. Computers and Structures Inc, CaliforniaGoogle Scholar
  16. Computers and Structures Inc. (2009) SAP2000. CaliforniaGoogle Scholar
  17. Computers and Structures Inc. (2016) PERFORM-3D. CaliforniaGoogle Scholar
  18. D’Ayala D, Benzoni G (2012) Historic and traditional structures during the 2010 Chile earthquake: observations, codes, and conservation strategies. Earthq Spectra 28(Suppl. 1):425–451.  https://doi.org/10.1193/1.4000030 CrossRefGoogle Scholar
  19. Doglioni F, Moretti A, Petrini V (1994) Le chiese e il terremoto. In: Le chiese e il terremoto (C.N.R. Edi). Trieste, ItalyGoogle Scholar
  20. Irizarry J, Podestá S, Resemini S (2003) Curvas de Capacidad para Edificios Monumentales: La Iglesia de Santa María del Mar de Barcelona. In A. E. de I. Sísmica (ed) 2do Congreso Nacional de Ingeniería Sísmica. Málaga, pp 541–555Google Scholar
  21. Lagomarsino S, Giovinazzi S (2006) Macroseismic and mechanical models for the vulnerability and damage assesment of current buildings. Bull Earthq Eng 4:415–443CrossRefGoogle Scholar
  22. Lagomarsino S, Penna A, Galasco A, Cattari S (2013) TREMURI program: an equivalent frame model for the nonlinear seismic analysis of masonry buildings. Eng Struct 56:1787–1799CrossRefGoogle Scholar
  23. Laible J (1992) Analisis estructural, 1st edn. Mc Graw Hill, México, D.F.Google Scholar
  24. Magenes G (2000) A method for pushover analysis in seismic assessment of masonry buildings. In: 12th world conference on earthquake engineering, pp 1–8Google Scholar
  25. Magenes G, Della Fontana A (1998) Simplified non-linear seismic analysis of masonry buildings. In: 5th international masonry conference (January 1998), pp 190–195.  https://doi.org/10.6092/UNINA/FEDOA/8417
  26. Mallardo V, Malvezzi R, Milani E, Milani G (2008) Seismic vulnerability of historical masonry buildings: a case study in Ferrara. Eng Struct 30(8):2223–2241.  https://doi.org/10.1016/j.engstruct.2007.11.006 CrossRefGoogle Scholar
  27. Mazzoni S, McKenna F, Scott MH, Fenves GL (2007) OpenSees command language manual. University of California. http://opensees.berkeley.edu/OpenSees/manuals/usermanual/OpenSeesCommandLanguageManual.pdf
  28. Meirovitch L (2001) Fundamentals of vibrations, 1st edn. Mc Graw Hill, SingaporeGoogle Scholar
  29. Meli R (1998) Ingeniería Estructural de los Edificios Historicos (Fundación ICA. A.C., Ed.) (Primra edi). México D.FGoogle Scholar
  30. MIdas Information Technology (2016) Midas GenGoogle Scholar
  31. Palazzi N, Rovero L, De la Llera J, Sandoval C (2019) Preliminary assessment on seismic vulnerability on masonry churches in central Chile. Int J Archit Herit.  https://doi.org/10.1080/15583058.2019.1570388 Google Scholar
  32. Peña F (2001) Rigid element model for dynamic analysis of in-plane masonry structures. Politecnico Di Milano, MilanGoogle Scholar
  33. Peña F, Casolo S (2012) RIGID—Programa de Elementos Rígidos para el Análisis dinámico no lineal de Estructuras de Mampostería—Manual de Usuario. Instituto de Ingeniería de la UNAM, México, DFGoogle Scholar
  34. Peña F, García N (2016) Numerical evaluation of the seismic behavior of façades of Mexican colonial churches. Eng Fail Anal 62(February):164–177.  https://doi.org/10.1016/j.engfailanal.2016.01.011 CrossRefGoogle Scholar
  35. Peña F, Lourenço PB, Mendes N, Oliveira DV (2010) Numerical models for the seismic assessment of an old masonry tower. Eng Struct 32(5):1466–1478.  https://doi.org/10.1016/j.engstruct.2010.01.027 CrossRefGoogle Scholar
  36. Pérez F, Beas M, Leonard D, Muzio F, Pardo J, Prado F (2009) El interior de la Catedral: antecedentes histórico morfológicos y bases para su conservación. Santiago de ChileGoogle Scholar
  37. Quagliarini E, Maracchini G, Clementi F (2017) Uses and limits of the equivalent frame model on existing unreinforced masonry buildings for assessing their seismic risk: a review. J Build Eng 10(March):166–182.  https://doi.org/10.1016/j.jobe.2017.03.004 CrossRefGoogle Scholar
  38. Raka E, Spacone E, Sepe V, Camata G (2015) Advanced frame element for seismic analysis of masonry structures: model formulation and validation. Earthq Eng Struct Dyn 44:2489–2506CrossRefGoogle Scholar
  39. Razzaghi MS, Javidnia M (2015) Evaluation of the effect of infill walls on seismic performance of RC dual frames. Int J Adv Struct Eng 7(1):49–54.  https://doi.org/10.1007/s40091-015-0081-x CrossRefGoogle Scholar
  40. Roca P, Molins C, Marí A (2005) Strength capacity of masonry wall structures by the equivalent frame method. J Struct Eng 131(10):1601–1610.  https://doi.org/10.1061/(ASCE)0733-9445(2005)131:10(1601) CrossRefGoogle Scholar
  41. Roca P, Cervera M, Gariup G, Pelà L (2010) Structural analysis of masonry historical constructions. Classical and advanced approaches. Arch Comput Methods Eng 17(3):299–325.  https://doi.org/10.1007/s11831-010-9046-1 CrossRefGoogle Scholar
  42. Sandoval C, Valledor R, Lopez-Garcia D (2017) Numerical assessment of accumulated seismic damage in a historic masonry building. A case study. Int J Archit Herit 11(8):1177–1194.  https://doi.org/10.1080/15583058.2017.1356945 Google Scholar
  43. Siano R, Camata G, Spacone E, Roca P (2017) Analysis of the performance in the linear field of equivalent-frame models for regular and irregular masonry walls. Eng Struct 145(December):190–210.  https://doi.org/10.1016/j.engstruct.2017.05.017 CrossRefGoogle Scholar
  44. Siano R, Roca P, Camata G, Pelà L, Sepe V, Spacone E (2018) Numerical investigation of non-linear equivalent-frame models for regular masonry walls. Eng Struct 173(July):512–529.  https://doi.org/10.1016/j.engstruct.2018.07.006 CrossRefGoogle Scholar
  45. Torres W, Almazán JL, Sandoval C, Boroschek R (2016) Determination of modal properties and FE model updating of the Metropolitan Cathedral of Santiago de Chile. SAHC (Structural Analysis of Historical Constructions), pp 804–811Google Scholar
  46. Torres W, Almazán JL, Sandoval C, Boroschek R (2017) Operational modal analysis and FE model updating of the Metropolitan Cathedral of Santiago, Chile. Eng Struct 143:169–188CrossRefGoogle Scholar
  47. Torres W, Almazán JL, Sandoval C, Peña F (2018) Fragility analysis of the nave macro-element of the Cathedral of Santiago, Chile. Bull Earthq Eng 16:3031–3056.  https://doi.org/10.1007/s10518-017-0292-6 CrossRefGoogle Scholar
  48. Vanin F, Almeida JP, Beyer K (2017) Force-based finite element for modelling the cyclic behaviour of unreinforced masonry piers. In: 16th world conference on earthquake engineering, Santiago, ChileGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of Civil EngineeringUniversidad Politécnica Salesiana – Campus SurQuitoEcuador
  2. 2.Department of Structural and Geotechnical EngineeringPontificia Universidad Católica de ChileSantiagoChile
  3. 3.School of ArchitecturePontificia Universidad Católica de ChileSantiagoChile
  4. 4.Department of Civil EngineeringUniversity of ChileSantiagoChile

Personalised recommendations