Advertisement

Seismic evaluation method for existing reinforced concrete buildings in North of Morocco

  • Seif-eddine CherifEmail author
  • Mimoun Chourak
  • Mohammed Abed
  • Luis Pujades
Original Research
  • 13 Downloads

Abstract

The purpose of this study is to seismically evaluate reinforced concrete buildings in the northern region of Morocco. In the past, the area have suffered from numerous earthquakes, lately the 2004 earthquake near the city of Al Hoceima (Mw of 6.4 causing more than 600 fatalities) and the region is constantly subject to seismic threats. A total number of 2746 residential buildings from the cities of Al Hoceima and Imzouren have been investigated for the purposes of this study. The proposed method adapts the Japanese Seismic Index Method making it more time-efficient and tuned to the context of the Moroccan construction. The method is based on a visual inspection of buildings and an in-depth insight of how constructions are designed and built in the region. The results show that Imzouren is more exposed to damage than the city of Al Hoceima is, mainly due to the soil nature. The method also shows that as the building’s height increases, it becomes more vulnerable. Furthermore, constructions that comply with the seismic regulations have a significant capacity to withstand damage without collapsing unlike other non-engineered buildings that have an almost non-existent ductility and can collapse soon during intense earthquakes.

Keywords

Seismic vulnerability Index method Capacity curves Al Hoceima Imzouren 

Notes

Acknowledgements

This research benefited from the ICTP-OEA (Trieste) Programme in the framework of the North African Group for Earthquake and Tsunami studies (NAGET) activities.

References

  1. Bezzeghoud M, Buforn E (1999) Source parameters of the 1992 Melilla (Spain, Mw = 4.8), 1994 Al Hoceima (Morocco Mw = 5. 8) and Mascara (Algeria, Mw = 5.7) earthquakes and seismotectonic implications. Bull Seismol Soc Am 89:359–372Google Scholar
  2. Cherif SE, Chourak M, Abed M, Pujades L (2017) Seismic risk in the city of Al Hoceima (north of Morocco) using the vulnerability index method, applied in Risk-UE project. Nat Hazards 85(1):329–347CrossRefGoogle Scholar
  3. Cherkaoui T, El Hassani A (2012) Seismicity and seismic hazard in Morocco 1901–2010. Bulletin de l’Institut Scientifique, Rabat, section Sciences de la Terre 34:45–55Google Scholar
  4. Cherkaoui TE, Harnafi M (2005) Le séisme d’Al Hoceima du 24 février 2004. Trav. Col. Nat. Sur: Région de Taza-Al Hoceima-Taounate, ressources et stratégies de développement. Pub Fac Polydisciplinaire de Taza 1:27–38Google Scholar
  5. Cherkaoui T, Hatzfeld D, Jebli H, Medina F, Caillot V (1990) Etude microsismique de la région d’Al Hoceima. Bull Inst Sci Rabat 4:25–34Google Scholar
  6. Computers and Structures Inc (1997) SAP2000, Integrated finite element analysis and design of structures. Version 6.1 Sept 1997, Berkeley, CA, USAGoogle Scholar
  7. Corella (2004) Al Hoceima earthquake 24 02 2004. Field report Patrick Murphy Corella Architect. June 2004Google Scholar
  8. Douiri A, Mourabit T, Cheddadi A, Chourak M (2014) Pertinence de la méthode H/V « bruit de fond » pour l’évaluation de l’effet de site dans la ville d’Imzouren (Rif central, Maroc). Notes et Mém Serv Géol du Maroc 577:1–6Google Scholar
  9. El Alami SO, Tadili BA, Cherkaoui TE, Medina F, Ramdani M, Ait Brahim L, Harnafi M (1998) The Al Hoceima earthquake of May 26, 1994 and its aftershocks: a seismotectonic study. Ann Geofisica 41:519–537Google Scholar
  10. Federal Emergency Management Agency (FEMA) (1997) NEHRP guidelines for the seismic rehabilitation of buildings. FEMA 273, Washington (DC)Google Scholar
  11. FEMA 154 (1998) Rapid visual screening of buildings for potential seismic hazards—a handbook. Federal Emergency Management Agency, Washington, DCGoogle Scholar
  12. FEMA 310 (1998) Handbook for the seismic evaluation of buildings—a prestandard. Federal Emergency Management Agency, Washington, DCGoogle Scholar
  13. Goula X, Gonzalez M (2004) Visite technique à la zone endommagé par le séisme d’Al-hoceima du 24 février 2004. Generalitat de Catalunya. Institut Cartogra`fic de Catalunya, ICC-GS-192/2004 (fr)Google Scholar
  14. Grünthal G (1998) European macroseismic scale 1998. Centre Européen de Géodynamique et de Séismologie, LuxemburgGoogle Scholar
  15. Guevara LT, Garcia LE (2005) The captive- and short-column effects. Earthq Spectra 21(1):141–160CrossRefGoogle Scholar
  16. Hassan AF, Sozen MA (1997) Seismic vulnerability assessment of low-rise buildings in regions with infrequent earthquakes. ACI Struct J 94(1):31–39Google Scholar
  17. Jabour N, Kasmi M, Menzhi M, Birouk A, Hni L, Hahou Y, Timoulali Y, Bedrane S (2004) The February 24th, 2004 Al Hoceima earthquake, Newsletter of European-Mediterranean Seismological Centre, No 21, ISSN:1607-1980Google Scholar
  18. JBDPA (2001) Standard for seismic evaluation of existing reinforced concrete buildings. Japan Building Disaster Prevention AssociationGoogle Scholar
  19. Lagomarsino S, Giovinazzi S (2006) Macroseismic and mechanical models for the vulnerability and damage assessment of 453 current buildings. Bull Earthq Eng 4:415–443CrossRefGoogle Scholar
  20. Milutinoviç ZV, Trendafiloski GS (2003) WP04: vulnerability of current buildings handbook. RISK-UE project: an advanced approach to earthquake risk scenarios with applications to different European towns. Contract No. EVK4-CT-2000-00014, Institute of Earthquake Engineering and Engineering Seismology (IZIIS), SkopjeGoogle Scholar
  21. Ozdemir P, Boduroglu MH, Ilki A (2005) Seismic safety screening method. In: Proceedings of the international workshop on seismic performance assessment and rehabilitation of existing buildings (SPEAR), Ispra, Italy, Paper No. 23 (on CD)Google Scholar
  22. Prakash VG, Powell H, Campbell S (1993) DRAIN-2DX base program description and user guide. Report No: UCB. SEMM-93/17, University of California at BerkeleyGoogle Scholar
  23. PS92 (1995) Règles PS applicables aux bâtiments. NF P 06-013-DTU Règles PS 92, Décembre 1995Google Scholar
  24. R.P.S. 2000 (2002) Règlement de construction parasismique. Ministère de l’Aménagement du Territoire, de l’Urbanisme, de l’Habitat et de l’Environnement. Secrétariat d’Etat à l’HabitatGoogle Scholar
  25. R.P.S. 2000, Version 2011 (2011) Règlement de construction parasismique. Ministère de l’Habitat, de l’Urbanisme et de l’Aménagement de l’EspaceGoogle Scholar
  26. Tahayt A, Feigl KL, Mourabit TL, Rigo A, Reilinger R, McClusky S, Fadil A, Berthier E, Dorbath L, Serroukh M, Gomez F, Ben Sari D (2009) The Al Hoceima (Morocco) earthquake of 24 February 2004, analysis and interpretation of data from ENVISAT ASAR and SPOT5 validated by ground-based observations. Remote Sens Environ 113(2009):306–316.  https://doi.org/10.1016/j.rse.2008.09.015 CrossRefGoogle Scholar
  27. Talhaoui A (2005) Risques géologiques et activité sismique dans la région d’Al Hoceima: Impact sur l’environnement et l’aménagement. Thèse de doctorat, Fac. Sci., Univ. Rabat, 207 pGoogle Scholar
  28. Yakut A (2004) Preliminary seismic performance assessment procedure for existing RC buildings. Eng Struct 26(10):1447–1461CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Département de Génie Civil, Faculté des Sciences et TechniquesUniversité Cadi AyyadMarrakeshMorocco
  2. 2.Ecole Nationale des Sciences Appliquées OujdaUniversité Mohammed PremierOujdaMorocco
  3. 3.Université de Blida, AlgérieBlidaAlgeria
  4. 4.Department of Geotechnical Engineering and Geosciences, Civil Engineering SchoolTechnical University of CataloniaBarcelonaSpain

Personalised recommendations