Skip to main content
Log in

New procedure for deriving multifrequential dynamic equivalent signals (LEMA_DES): a test-study based on Italian accelerometric records

  • Original Research Paper
  • Published:
Bulletin of Earthquake Engineering Aims and scope Submit manuscript

Abstract

The here proposed LEMA_DES (Levelled-Energy Multifrequential Analysis for Dynamic Equivalent Signals) procedure is a new approach for defining multifrequential dynamic equivalent signals from real accelerograms, to be applied for physic-analogue and numerical geotechnical modelling of induced seismic effects. In this approach, the resulting equivalent signals satisfy criteria of spectral, energetic and kinematic equivalence to the related real prototypes. The approach was tested to analyse the accelerometric records of the November 23rd, 1980 Irpinia (Italy) earthquake. Based on 48 selected records, correlations were studied between the characteristic parameters of both real and equivalent signals. These correlations demonstrate that the proposed approach guarantees: i) the energy equivalence of the derived signals, except for a half order of magnitude, and ii) the equivalence of the peak ground acceleration (PGA) values with relative errors below 105%. The computed relative error on the cumulative energy of the LEMA_DES signals (Δr V eq %), which have spectral amplitudes at frequencies lower than 1 Hz, drops below 30%, while the same error increases above 2500%, in the same frequency range, for sinusoidal signals obtained according to traditional approaches. The PGAs of the LEMA_DES signals show a good fit with the PGA attenuation law proposed for the central-southern Apennines. Correlations between the Arias intensities and PGAs of the equivalent signals with respect to the actual ones demonstrate that their characteristic parameters: i) well represent the spatial variation in terms of energy and ground motion; ii) reproduce an analogue earthquake scenario with respect to the reference seismic event.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Balakrishnan A, Kutter BL (1999) Settlement, sliding, and liquefaction remediation of layered soil. J Geotech Geoenv Eng ASCE 125: 968–978

    Article  Google Scholar 

  • Balakrishnan A, Kutter BL, Idriss IM (1998) Centrifuge Testing of Remediation of Liquefaction at Bridge Sites. Transportation Research Record 1633(Liquefaction. Differential Settlement and Foundation Engineering TRR 1633): 26–37

    Article  Google Scholar 

  • Boore MD (1983) Stochastic simulation of high-frequency ground motions based on seismological models of the radiated spectra. Bull Seism Soc Am 73: 1865–1894

    Google Scholar 

  • Boore MD (2000) SMSIM-Fortran programs for simulating ground motions from earthquakes, Version 2.0, A revision of OFR 96-80-A (No. A revision of USGS OFR00-509). http://geopubs.wr.usgs.gov/open-file/of00-509/

  • Bottari A, Federico B, Giovani L, Lo Iudice E, Spadea MC, Vecchi M (1981) The Irpinia earthquake of 23 November 1980: macroseismic field and attenuation of intensity. Rendiconti Soc Geol Ital 4(5): 549–551

    Google Scholar 

  • Bourdin B (1988) Vibrations et simulations de séismes sur fondations en centrifugeuse. In: Corté JF (eds) Centrifuge 88. Balkema, Rotterdam, pp 487–493

    Google Scholar 

  • Bozzano F, Cardarelli E, Cercato M, Lenti L, Martino S, Paciello A, Scarascia Mugnozza G (2008) Engineering-geology model of the seismically-induced Cerda landslide. Bollettino di Geofisica Teorica ed Applicata 49(2): 205–226

    Google Scholar 

  • Bozzano F, Lenti L, Martino S, Paciello A, Scarascia Mugnozza G (2008b) Self-excitation process due to local seismic amplification responsible for the 31st October 2002 reactivation of the Salcito landslide (Italy). J Geophys Res doi:10.1029/2007JB005309

  • Bozzano F, Scarascia Mugnozza G, Valentini G (1996) Frane indotte da terremoti: un confronto tra gli eventi dell’Irpinia (1980) e di Kobe (1995). Atti dei Convegni dei Lincei 134: 37–42

    Google Scholar 

  • Carmignani L, Cello G, Cerrina Feroni A, Funiciello R, Kalin O, Meccheri M, Patacca E, Pertusati P, Plesi G, Salvini F, Scandone P, Tortorici L, Turco E (1981) Analisi del campo di fratturazione superficiale indotto dal terremoto campano-lucano del 23/11/1980. Rend Soc Geol It 4: 451–465

    Google Scholar 

  • Cascone E, Rampello S (2003) Decoupled seismic analysis of an earth dam. Soil Dyn Earthq Eng 23: 349–365

    Article  Google Scholar 

  • Cetin KO, Seed RB (2004) Nonlinear shear mass participation factor (rd) for cyclic shear stress ratio evaluation. Soil Dyn Earthq Eng 24(2): 103–113

    Article  Google Scholar 

  • Chang KJ, Taboada A, Lin ML, Chen RF (2005) Analysis of landsliding by earthquake shaking using a block-on-slope thermo-mechanical model: example of Jiufengershan landslide, central Taiwan. Eng Geol 80: 151–163

    Article  Google Scholar 

  • Cinque A, Patacca E, Scandone P, Tozzi M (1991) Quaternary kinematic evolution of the Southern Apennines. Relationship between surface geological features and deep lithospheric structures. Annali di Geofisica 36(2): 249–260

    Google Scholar 

  • Costanzo A, D’onofrio A, Silvestri F (2007) Numerical simulations of the ground deformation recorded in the historical town of Gerace during seismic events in Calabria (1783). In: Proceedings of 4th international conference on earthquake geotechnical engineering June 25–28, Paper No. 1613

  • CPTI04 (2004) Catalogo Parametrico dei Terremoti Italiani dal 217 a.C. al 2002. INGV. http://emidius.mi.ingv.it/CPTI04/

  • Crespellani T, Madiai C, Maugeri M (1996) Analisi di stabilità di un pendio in condizioni sismiche e post-sismiche. Rivista Italiana di Geotecnica 1: 50–59

    Google Scholar 

  • Dai FC, Lee CF, Deng JH, Tham LG (2005) The 1786 earthquake-triggered landslide dam and subsequent dam-break flood on the Dadu River, southwestern China. Geomorphology 65: 205–221

    Article  Google Scholar 

  • DBMI04 (2004) Database Macrosismico Italiano. INGV. http://emidius.mi.ingv.it/DBMI04

  • D’Elia B, Esu F, Pellegrino A, Pescatore TS (1985) Some effects on natural slope stability induced by the 1980 Italian earthquake. Proc XI Int Conf Soil Mech Found Eng, S. Francisco, Balkema (Rotterdam) 4: 1943–1950

    Google Scholar 

  • D’Elia B, Federico G, Pescatore T, Rippa F (1986) Occurrence and development of large landslide (Andretta, Italy) reactivated by the November 23rd 1980 earthquake. Geol Appl e Idrogeol XXI(2): 365–381

    Google Scholar 

  • Dipartimento della Protezione Civile (2004) The Strong Motion Records of Molise Sequence (October 2002–December 2003). Ufficio Servizio Sismico Nazionale—Servizio Sistemi di Monitoraggio. CD-ROM, Rome

  • Funiciello R, Pantosti D, Valensise G (1988) Fagliazione superficiale associata al terremoto irpino del 23/11/1980. Mem Soc Geol It 41: 1139–1144

    Google Scholar 

  • Genevois R, Prestininzi A (1982) Deformazioni e movimenti di massa indotti dal sisma del 23-11-1980 nella media Valle del F Tammaro (BN). Geol Appl e Idrogeol XVII: 305–318

    Google Scholar 

  • Ghosh B, Madabhushi SPG (2004) A numerical investigation into effects of single and multiple frequency earthquake motions. Soil Dyn Earthq Eng 23: 691–704

    Article  Google Scholar 

  • Gupta ID, Trifunac MD (1997) Defining equivalent stationary PSDF to account for nonstationarity of earthquake ground motion. Soil Dyn Earthq Eng 17: 89–99

    Article  Google Scholar 

  • Hutchinson JN, Del Prete M (1985) Landslide at Calitri, Southern Apennines, reactivated by the earthquake of 23rd November 1980. Geol Appl e Idrogeol XX(1): 9–38

    Google Scholar 

  • INGV, SGA (2007) CFTI4MED: Catalogue of Strong earthquakes in Italy 461 B.C. - 1997 and Mediterranean Area 760 B.C. - 1550. http://storing.ingv.it/cfti4med/

  • Ishihara K (1977) Simple method of analysis for liquefaction of sand deposits during earthquakes. Soils Found 17(3): 1–17

    Google Scholar 

  • Ishihara K, Koga Y (1981) Case studies of liquefaction in the 1964 Niigata earthquake. Soils and Foundations, Japanese Society of Soil Mechanics and Foundation Engineering 21(3): 35–52

    Google Scholar 

  • Iwasaki T (1986) Soil liquefaction studies in Japan: state-of-the-art. Soil Dyn Earthq Eng 1: 1–68

    Google Scholar 

  • Ketcham SA, Ko HY, Sture S (1991) Performance of an earthquake motion simulator for a small geotechnical centrifuge. In: Ko HY, McLean FG (eds) Centrifuge 91. Balkema, Rotterdam, pp 361–368

    Google Scholar 

  • Kleinbaum DG, Kupper LL (1978) Applied regression analysis and other multivariate methods. Duxbury Press, North Scituate, p 556

    Google Scholar 

  • Koseki J, Koga Y, Takahashi A (1994) Liquefaction of sandy ground and settlement of embankments. In: Leung CF, Lee FH, Tan TS (eds) Proceedings of centrifuge 94, Singapour, 31/08–2/09 1994. Balkema, Rotterdam, pp 215–220

    Google Scholar 

  • Kutter BL, Balakrishnan A (1999) Visualization of soil behavior from dynamic centrifuge model tests. Earthquake Geotechnical Engineering. In: Seco e Pinto (ed) Proceedings of 2nd international conference on earthquake geotechnical engineering, Lisbon, Balkema, Rotterdam, vol. 3, pp 857–862

  • Kutter BL, Idriss IM, Khonke T (1994) Design of a large earthquake simulator. In: Davis , Leung CF, Lee FH, Tan TS (eds) Centrifuge 94, Singapore, 31-08/2-09-94. Balkema, Rotterdam, pp 169–176

    Google Scholar 

  • Lin ML, Wang KL (2006) Seismic slope behavior in a large-scale shaking table model test. Eng Geol 86: 118–133

    Article  Google Scholar 

  • Malvick EJ, Kulasingam R, Kutter BL, Boulanger RW (2002) Effects of void redistribution on liquefaction flow of layered soil: centrifuge data report for EJM01. Report No UCD/CGMDR-02/02

  • Martino S, Scarascia Mugnozza G (2005) The role of the seismic trigger in the Calitri landslide (Italy): hystorical reconstruction and dynamic analysis. Soil Dyn Earthq Eng 25: 933–950

    Article  Google Scholar 

  • Martino S, Rischia I, Scarascia Mugnozza G (2001) Analisi numerica di frane sismoindotte: i casi di Calitri e Morra De Sanctis (AV). Mem Soc Geol It 56: 109–122

    Google Scholar 

  • Martino S, Paciello A, Sadoyan T, Scarascia Mugnozza G (2007) Dynamic numerical analysis of the giant Vokhchaberd landslide (Armenia). Earthquake Geotechnical Engineering. In: Kyriazis D (ed) 4th international conference on earthquake geotechnical engineering-invited lectures series: geotechnical, geological, and earthquake engineering, Vol. 6, Pitilakis, Paper no 1735

  • Michetti AM, Blumetti AM, Esposito E, Ferreli L, Guerrieri L, Porfido S, Serva L, Vittori E (2000) Earthquake ground effects and seismic hazard assessment in Italy examples from the Matese and Irpinia areas, Southern Apennines, active fault research for the new millennium, Proceedings of the hokudan symposium and school on active faulting, pp 279–284

  • Nostro C, Cocco M, Belardinelli ME (1997) Static stress changes in extensional regimes: an application to Southern Apennines (Italy). BSSA 87(1): 234–248

    Google Scholar 

  • Peiris LMN, Madabhushi SPG, Schofield AN (1998) Dynamic behaviour of gravel embankmants on loose saturated sand foundations. In: Kimura, Kusakabe, Takemura (eds) Proceedings of the centrifuge 98, Tokyo, Japan, 23–25 Sept.98, Balkema, Rotterdam, pp 263–270

  • Porfido S, Esposito E, Vittori E, Tranfaglia G, Michetti AM, Blumetti M, Ferreli L, Guerrieri L, Serva L (2002) Areal distribution of ground effects induced by strong earthquakes in the Southern Apennines (Italy). Surv Geophys 23: 529–562

    Article  Google Scholar 

  • Postpischl D, Branno A, Esposito E, Ferrari G, Maturano A, Porfido S, Rinaldis V, Stucchi M (1985) The Irpinia earthquake of November 23, 1980. Atlas Isoseismal Maps Italian Earthq CNR-PFG 114(2B): 152–157

    Google Scholar 

  • Potthoff RF (1966) Statistical aspects of the problem of biases in psychological tests (Institute of Statistic Mimeo, series no 479). Department of Statistics, University of North Carolina, Chapel Hill

    Google Scholar 

  • Rayhani MHT, Naggar MHE (2007) Centrifuge modelling of seismic response of layered soft clay. Bull Earth Eng 5: 571–589

    Article  Google Scholar 

  • Romeo R (2000) Seismically induced landslide displacements: a predictive model. Eng Geol 58(3/4): 337–351

    Article  Google Scholar 

  • Rovelli A, Bonamassa O, Cocco M, Di Bona M, Mazza S (1988) Scaling law and spectral parameters of the ground motion in active extensional areas in Italy. BSSA 79: 530–560

    Google Scholar 

  • Sabetta F, Pugliese A (1987) Attenuation of the peak horizonthal acceleration and velocity from Italian strong-motion records. BSSA 77: 1491–1511

    Google Scholar 

  • Sabetta F, Pugliese A (1996) Estimation of response spectra and simulation of nonstationary earthquake ground motion. BSSA 86: 337–352

    Google Scholar 

  • Saragoni GR, Hart GC (1974) Simulation of artificial earthquakes. Earthq Eng Struct Dyn 2: 249–267

    Article  Google Scholar 

  • Sato M (1994) A new dynamic geotechnical centrifuge and performance of shaking table test. In: Leung CF, Lee FH, Tan TS (eds) Centrifuge 94. Balkema, Rotterdam, pp 157–162

    Google Scholar 

  • Scarpa R (1981) Il terremoto campano-lucano del 23/11/1980: elaborazione dati sismometrici. Rend Soc Geol It 4: 427–450

    Google Scholar 

  • Seed HB (1976) Evaluation of soil liquefaction effects on level ground during earthquakes. Liquefaction problems in geotechnical engineering, ASCE annual convention and exposition, Philadelphia PA, pp 1–109

  • Seed HB (1979) Considerations in the earthquake-resistance design of earth and rockfill dams. Geotechnique 29(3): 215–263

    Article  Google Scholar 

  • Seed HB (1979) Soil liquefaction and cyclic mobility evaluation for level ground during earthquakes. J Geotech Eng Div ASCE 105(GT2): 102–155

    Google Scholar 

  • Seed HB, Arango I, Chan CK, Gomez Masso A, Ascoli RG (1981) Earthquake induced liquefaction near lake Amatitlan, Guatemala. J Geoth Eng Div ASCE 107(GT4): 501518

    Google Scholar 

  • Seed HB, Idriss IM (1971) Simplified procedure for evaluating soil liquefaction potential. J Soil Mech and Found Div ASCE 97(9): 1249–1273

    Google Scholar 

  • Seed HB, Idriss IM (1969) Influence of soil conditions on ground motion during earthquakes. J Soil Mech Found Div ASCE 95: 99–137

    Google Scholar 

  • Seed HB, Idriss IM, Arango I (1983) Evaluation of liquefaction potential using field performance data. J Geoth Eng Div ASCE 109(3): 458–482

    Article  Google Scholar 

  • Seed HB, Lee KL, Idriss IM, Makdisi FI (1975) The slides in the San Fernando dam during the earthquake of February 9, 1971. J Geoth Eng Div ASCE 101(GT7): 651–688

    Google Scholar 

  • Semblat JF, Brioist JJ (2000) Efficiency of higher order finite elements for the analysis of seismic wave propagation. J Sound Vib 231(2): 460–467(8)

    Article  Google Scholar 

  • Semblat JF, Duval AM, Dangla P (1999) Seismic waves amplification: experimental and numerical analysis. In: Proceedings of the 2nd international conference on earthquake geotechnical engineering, Lisbon, pp 211–216

  • Semblat JF, Luong MP (1998) Wave propagation through soils in centrifuge testing. J Earthq Eng 2(1): 147–171

    Article  Google Scholar 

  • Semblat JF, Pecker A (2009) Waves and vibrations in soils: earthquake, traffic, shocks, construction works, IUSS Press - ISBN:8861980309, p 499

  • Shinozuka M (1970) Simulation of multivariate and multidimensional random processes. J Acoust Soc Am 49(1): 357–367

    Article  Google Scholar 

  • Simonelli AL, Viggiani C (1995). Effects of seismic motion characteristics on earth slope behaviour. In: Ishihara K (eds) Earthquake geotechnical engineering. Balkema, Rotterdam pp 1097–1102

    Google Scholar 

  • Stamatopoulos CA, Bassanou M, Brennan AJ, Madabhushi G (2007) Mitigation of the seismic motion near the edge of cliff-type topographies. Soil Dyn Earthq Eng 27: 1082–1100

    Article  Google Scholar 

  • Travasarou T, Bray J, Abrahamson N (2003) Empirical attenuation relationship for Arias intensity. Earthq Eng Struct Dyn 32(7): 1133–1155

    Article  Google Scholar 

  • Wang ZL, Makdisi FI, Egan J (2006) Practical applications of a nonlinear approach to analysis of earthquake-induced liquefaction and deformation of earth structures. Soil Dyn Earthq Eng 26: 231–252

    Article  Google Scholar 

  • Westaway R, Jackson JA (1984) Surface faulting in the southern Italian Campania-Basilicata earthquake of 23 Nov 1980. Nature 312: 436–438

    Article  Google Scholar 

  • Westaway R (1993) Fault rupture geometry for the 1980 Irpinia earthquake: a working hypothesis. Annali di Geofisica 36(1): 51–69

    Google Scholar 

  • Working Group ITACA (2008) Data base of the Italian strong motion data. http://itaca.mi.ingv.it

  • Zelikson A, Devaure B, Badel D (1981) Scale modeling of soils structure interaction during earthquakes using a programmed series of explosions during centrifiugation. In: Proceedings of the international conference on recent advance in geotechnical earthquake engineering and soil dynamics, pp 361–366

  • Zienkiewicz OP (2005) The finite element method. McGraw-Hill, London, p 785

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Martino.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lenti, L., Martino, S. New procedure for deriving multifrequential dynamic equivalent signals (LEMA_DES): a test-study based on Italian accelerometric records. Bull Earthquake Eng 8, 813–846 (2010). https://doi.org/10.1007/s10518-009-9169-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10518-009-9169-7

Keywords

Navigation